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1. Introduction and Nomenclature

The linear-quadratic-gaussian (LQG) compensator [1-3] has been developed to facilitate the
design of control laws for multi-input multi-output (MIMO) systems. An LQG compensator mini-
mizes a quadratic performance index and (under mild conditions) is guaranteed to yield an internally
stable closed-loop system. Unfortunately, however, the minimal dimension of an LQG compensator
is almost always equal to the dimension of the plant and can thus often violate practical implemen-
tation constraints on controller order. This deficiency is especially highlighted when considering
control-design for high-order systems such as flexible space structures. Hence, a very relevant area
of research is the development of methodologies that will enable the design of optimal controllers

whose dimension is less than that of the design plant (i.e., reduced-order controllers).

Two main approaches have been developed to tackle the reduced-order design problem. The
first approach attempts to develop approximations to the optimal reduced-order controller by re-
ducing the dimension of an LQG controller [4-11). These methods are attractive because they
require relatively little computation and should be used if possible. Unfortunately, they tend to
yield controllers that either destabilize the system or have poor performance as the requested con-
troller dimension is decreased and/or the requested authority level is increased. Hence, if used in

isolation, these methods do not yield a reliable methodology for reduced-order design.

The second approach attempts to directly synthesize an optimal, reduced-order controller by
a numerical optimization scheme [12-25]. Almost all of these schemes are parameter optimization
approaches; that is, they represent the controller by some parameter vector and attempt to find
the vector that optimizes the cost functional. Unfortunately, most of these schemes have only
local convergence properties and hence have the potential of failure if the initial controller is not
“close” to the optimal controller. One exception is the homotopy algorithm described in {20,25]. A
homotopy allows an initial controller to be deformed gradually into the desired optimal controller
by following a homotopy path. These schemes are particularly useful because they have global
convergence properties. Hence, this algorithm does not require the initial controller to be near
the optimal controller. The algorithm is based on solving a set of “optimal projection” equations
[26,27] that are a characterization of the necessary conditions for optimal reduced-order control.
Unfortunately, the algorithm has sublinear convergence properties and the convergence slows at

higher authority levels and may fail.

This volume describes a new homotopy algorithm for discrete-time systems which has been
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implemented in MATLAB. The homotopy algorithm is based on a parameter optimization for-
mulation. This algorithm shares the global convergence properties of the homotopy algorithm of
[20,25] but potentially has quadratic or superlinear convergence rates. The results reported here

may offer the foundation for a reliable approach to optimal, reduced-order controller design.

Nomenclature

Y>Z Y — Z is nonnegative definite

Y>Z Y — Z is positive definite

25, Z;j or Z(i j) (,7) element of matrix Z

I, 7 X r identity matrix

Z# the group generalized inverse of the square matrix Z
satisfying rank Z = rank Z? [28,29]

Z3 the (unique) nonnegative definite square root of Z (Z iz% = 2),
z2=2%>0

trZ trace of square matrix Z

HZ]|a absolute norm of matrix Z (||Z||4 = max;; | zi; |)

vec(-) the invertible linear operator defined such that

vec(s) £ [sT 57 ---s2]T, S € IRP*¢

where s; € IR? denotes the j*" column of 5.

eld) the m-dimensional column vector whose i*" element

N equals one and whose additional elements are zeros.

Ef,;’,’()n the m x n matrix whose (7,;) element equals one .
and whose additional elements are zero (= e eld) )-

ey the m x m matrix whose i*P row has all unity
elements and whose additional rows are zero.

Z for the square matrix Z, Z is the identically
dimensioned matrix defined by z;; = z;;.

Y2 Hadamard product of Y and Z([yi;2i;))
(Y and Z must have identical dimensions.)

Y/Z matrix whose (1,7) element is yi;/z;;
(Y and Z must have identical dimensions.)
(MATLAB notation)

z = A\b z is the least squares solution to Az = b

N, m X m matrix having unity elements (i.e., Ny ij = 1)

[T ]row—i matrix whose i*P row is given by the row vector
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zT and whose additional rows are zero. (The size of
the matrix is understood from the context)

[)col— matrix whose 7P column is given by the column vector z and whose
additional columns are zero. (The size of
the matrix is understood from the context.)

Z(k,:) k' row of the matrix Z
(MATLAB notation)
Z(:,k) k't column of the matrix Z
(MATLAB notation)
XY Z(k,:) k't row of the matrix XY Z
XY Z(:, k) kP column of the matrix XY Z
[b@,}w Z%Zz} partitioned symmetric matrix whose (1,1), (2,2) and (1,2) matrix

partitions are as given.
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2. Optimal Reduced-Order Discrete-Time Dynamic Compensation

Consider the discrete-time system

z(k + 1) = Az(k) + Bu(k) + wi(k) (2.1a)
y(k) = Cz(k) + Du(k) + wa(k) (2.1d)

where z € IR™, u € IR™, y € IR"™, w; € IR"™ is a white noise disturbance with covariance
Vi > 0, wy € IR™ is white observation noise with covariance V3 > 0, and w; and w; have cross

covariance Vj; € IR™ X" If D = 0, we desire to design a fixed-order dynamic compensator,

z.(k+1) = Acz(k) + Bey(k) (2.2a)
u(k) = =Ccz (k) — D.y(k), (2:20)

or if D # 0, we desire to design a fixed-order dynamic compensator

z(k+1) = Aczc(k) + B.y(k) (2-3a)
u(k) = —=C.z.(k) (2.3b)

which minimizes the steady-state performance criterion
J(Ae, B, Ce, D) = lim E[zT(k)Ryz(k) + 22T (k) Riou(k) + uT (k) Rou(k)] (2.4)

where z. € IR™, n, < ng, By = RY > 0, and R, = R} > 0. We will call this problem

the optimal reduced-order dynamic compensation problem for discrete-time systems.

The closed-loop system corresponding to (2.1) and (2.2) or (2.1) and (2.3) can be expressed as

ik + 1) = Az(k) + w(k) (2.5)
where
- A- BD.C -BC.
A= [ B.C  A.- BCDC,_.] (2.7)

and it understood that either D of D. is identically zero in (2.6) and (2.7). In addition, the cost

(2.4) can be expressed as
J(Ae; Be,Ce, De) = lim E[ET(k)RZ(K)] + E[w] (k)DT Ry D wy(k))] (2.8)
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where _ N
w= [ & =9
and
Ry, 2 R, -C™DTRY, - R,D.C +CT*DTR,D.C (2.10a)
Ryy 2 —Ry1;C. + CTDT R, C. (2.10b)
Ry, 2 CTRyC... (2.10¢)

To guarantee that the cost J is finite and independent of initial conditions we restrict our

attention to the set of stabilizing compensators,
S £ {(Ac, B.,Ce, D) A is asymptotically stable}. (2-11)

Assume (A, B.,C.,D.) € S. and define Q and P to be the closed-loop steady state covariance and
its dual, i.e.,

Q=AQAT +V (2.12)
P=ATPA+R (2.13)
where } :
Y Vi Vn]
v= | ¥ 2.14
[VS V2 (2.14)
and
Vi1 £ Vi - BD.V;: — Vi, DT BT + BD .V, DT BT (2.15a)
Vi: £ V1o BT — BD.V, BT (2.15b)
Va2 & B.V,BY. (2.15¢)
Then, the cost can be expressed as
J(Ae, Be,Ce, D.) = tr(QR) + tr(DI R, D.V}). (2.16)

Also, P and @ can be expressed in the partitioned forms

s I I?ll 1?12 5 ng Xns
P= [qu; Pzz] , PhLeR (2.17)
a-[& & awem o9
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Notice that Q;; is the covariance of the plant states, Q32 is the covariance of the compensator

states and Q,; is the cross-covariance of the plant and controller states.

Since the value of J is independent of the internal realization of the compensator, in what follows

we will further restrict our attention to minimal compensators. Hence, we define the admissable set,
S = {(AeyBe,Cey D) €S (Ac, Be) is controllable, (A, C.) is observable}. (2.19)

Note that S} is an open set.

Optimal Projection theory can be used to characterize all admissable extremals of the optimal
reduced-order dynamic compensation problem for discrete-time systems. Before presenting the
main theorems we present an important Lemma and some definitions which are useful in stating
the main results of optimal projection theory. The lemma also gives many properties of the optimal

projection solution (see Theorem 2.1).

Lemma 2.1 [1]. Suppose Q € IR™*™ and P € IR"**™ are symmetric and nonnegative

definite and rank QP = n.. Then, the following statements hold:
(i) QP is diagonalizable and has nonnegative eigenvalues.

(ii) The n; X ny matrix
-2 QPP (2.20)
is idempotent, i.e., 72 = 7 (7 is an oblique projection) and
rank 7 =n. (2.21)
Thus, if 7 is given by (2.18), then there exists a nonsingular matrix W € IR"**"* such that

I, 0],,-
T=W[0‘ O]W‘. (2.22)

(iii) There exists G,I" € IR™*™ and nonsingular M € IR™ ™" such that
QP =G™Tr (2.23)
ré* =1,.. (2:29)
(iv) If G, I' and M satisfy property (iii) then

rank G =rank I =rank M =n, (2.25)
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(QP)* =G™™'Tr (2.26)
r=G'r (2.27)
1GT=GY, I'r=r (2.28)

(v) The matrices G,I" and M satisfying property (iii) are unique except for a change of basis in
IR™,i.e., if G',I" and M' also satisfy property (iv), then there exists nonsingular T, € IR™ Xne
such that G’ = TYG, I'' = T,'I', M' = T, MT.. Furthermore, all such M are diagonalizable

with positive eigenvalues.

(vi) Finally, if rank Q = rank P = rank Qﬁ = n., there exists a nonsingular transformation

W € R,,_xn, such that

P=w-T [g g] w1 (2.29)
O=w [g 8] wT (2.30)

where Q € IR™*™ is diagonal and nonsingular. In addition,

P=1TP=Pr=1"Pr (2.31)
Q=rQ=QT=1Q7". (2.32)

Remark 2.1. The transformation W in statement (vii) meets the requirements of statement
(id)-

Definition 2.1. A triple (G, M, I') satisfying property (iii) of Lemma 2.1 is a projective
factorization of QP.

To optimize (2.8) subject to the constraint (2.12) we form the Lagrangian
L(A¢,B¢,Ce, D, P,Q) 2 t1[QR + P(AQA™ +V = Q) + DI Ry D V3] (2.33)

where P € IR(®s*+n<)X(ne+ne) i5 the Lagrange multiplier. The stationary conditions are then given

by

9L o, 9L _y (2.34)
opP i}

oc oc oc oc

aAc = 0, aBC = 0, a_C'c —_ 0’ a—D; = 0. (2.35)
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Definition 2.2. A compensator (A, B.,C., D) is an extremal of the optimal reduced-order

dynamic compensation problem for discrete-time systems if it satisfies the stationary conditions

(2.32).

Definition 2.3. A compensator (A.,B.,C.,D.) is an admissible eziremal of the optimal

reduced-order dynamic compensation problem for discrete-time systems if it is an extremal and is

also in S}.

Remark 2.2. The optimal (admissible) reduced-order dynamic compensator for discrete-time

systems (if it exists) can be found by computing all admissible extremals.

We can now state in the form of two theorems the basic result of Optimal Projection theory,
namely a set of necessary conditions which characterize admissible extremals of the optimal fixed-

order dynamic compensation problem. For convenience define
P, 2 BTPA+ R}, Q.2 AQCT + W, (2.36a,b)
Rro 2 Ry +BTPB, V;,5V,+CQCT. (2.37a,b)
Theorem 2.1 [3]. Suppose D = 0 and (A, B.,Cc, D) is an admissible extremal of the

optimal reduced-order dynamic compensation problem for discrete-time systems. Then, there exist

nonnegative-definite matrices P,Q,f’ and Q such that A., B.,C. and D, are given by

Ac=T(A- BR;\P. - Q.Vy 2 + QuaVy ) DRy LP. - BD.C)GT (2.38)
B.=T(Q.V;, + BD.) (2.39)
C. = (Ry Ps + D.C)GT (2.40)
D, = R;}(BTPAQC™ + RLQCT + BTPV;yV;7) (2.41)

for some projective factorization (G, M, TI") of Q, P such that the following conditions are satisfied:
P=ATPA+ R, - PIR; P,
+1T(A - Q.Vy 1C)TP(A = QuVy2C)+(Pa + Ry.aD.C)'R; y(Pat R2,a D.C)Ty (2:42)
Q =AQAT + Vi - Q.V;,Q;
+7.[(A -BR;LP.)Q(A - BR;AP)T+(Qa+ BDV2a)V5 Qo+ BDcVaa) I (2.43)
P=1T(A- Q.V; ) C)TP(A-QaV;,C)r
+ 7Py + R2,aD.C)TR; L (Pa + Ry, o D.C)T (2.44)
Q =7(A- BR;:\P.)Q(A - BR; L P.)TrT
+7(Qa + BDV2.0)V; )} (Qa + BD:V2,0) T 77 (2.45)
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rank P = rank Q = rank QP = n. (2.46)
= (QPYQHY (24)

Theorem 2.2 [3]. Suppose D # 0 and (A, Bc,C.) is an admissible extremal of the opti-
mal reduced-order dynamic compensation problem for discrete-time systems. Then, there exist
nonnegative-definite matrices P,Q,P and Q such that A, B, and C, are given by (2.38)—(2.40)
with D, = 0 for some projective factorization (G, M, I') of QP such that conditions (2.42)—(2.47)
are satisfied with D, = 0.

Remark 2.3. Theorem 2.1 is a modification of earlier results [2,4]. The primary difference
is that the P and Q in Theorem 2.1 satisfy the rank conditions (2.46), which parallels the corre-
sponding continuous-time theory [4,5], whereas the P and Q in [2] and [4] do not satisfy these rank

conditions.
The following corollary characterizes the optimal, full-order, discrete-time controller.

Corollary 2.1. If n, = n., then one can choose r = I' = G = I,,_, such that 7, = 0 and

(2.38)—(2.46) reduce to

A.=A-BC.-B.C - BD.C (2.48)
B.=Q.V;, - BD, (2.49)
Cc= R;.P. - D.C (2.50)
D. = R;}(BTPAQCT + R,L,QCT + BTPV,)V;,) (2.51)
where
P=ATPA+ R, - PTR;,P. (2.52)
Q = AQAT + Vi - Q.V; QT (2.53)
P=(A-Q.V;}C)TP(A-Q.V;C)
+(Pa+ R2,oD.C)TR;)(Pa + Ry . D.C) (2.54)
Q = (A - BR;.P.)Q(A - BR;,P,)T
+(Qa + BD.V;,0)V5} (Qa + BD.V; 0)T (2.55)
rank P = rank Q = rank QP = n,. (2.56)
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Remark 2.4. Condition (2.56) requires that the LQG controller (A., B.,C, D.) have minimal
order nz. Also, P and Q are not needed to compute the controller but are the closed-loop grammians

to be used in balanced controller reduction.

Remark 2.5. Notice that in the full-order case (i.e., n. = n.), without loss of generality
one can choose r = G = I' = I,, and (2.42) and (2.43) reduce to the standard regulator and
observer Riccati equations and (2.38)—(2.41) yield the usual LQG expressions. It can be shown
that (2.44)~(2.46) are equivalent to the requirement that the controller (Ac, B¢, C.) be minimal.

Theorem 2.4 [6]. Suppose there exists nonnegative definite matrices Q, P, Q and P satisfying
(2.40)-(2.45) and A., B.,C. and D, satisfy (2.36)—(2.39). Then, the compensator (A, B¢, C.) is
an extremal of the optimal fixed-order dynamic compensation problem. Furthermore the following
are equivalent:

(i) A is stable

(ii) (A, V1) is stabilizable
(iii) (A, R?) is detectable.
In addition,

(Ac, B.) is controllable <= A, + B.CG7 is stable (2.57)
(A.,C.) is observable <= A;+ I'BC, is stable. (2.58)

In the homotopy algorithms to be subsequently defined the optimal projection equations (2.42)-
(2.45) due to their relationship to standard LQG equations can be used to give insights into the
development of initializing controllers. However, the homotopy algorithms will be based directly
on the gradient of the cost functional.
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3. Review of Homotopy Methods

A “homotopy” is a continuous deformation of one function into another. Over the past several
years, homotopy or continuation methods (whose mathematical basis is algebraic topology and
differential topology [1]) have received significant attention in the mathematics literature and have
been applied successfully to several important problems [2-7]. Recently, the engineering literature
has also begun to recognize the utility of these methods for engineering applications (see e.g. [8-
10]). The purpose of this section is to provide a very brief description of homotopy methods for

finding the solutions of nonlinear algebraic equations.
The reader is referred to [7,8,11,12] for additional details.

The basic problem is as follows. Given set © and & contained in IR" and a mapping F : © — &,

find solutions to
F(6) = 0. (3.1)

Homotopy methods embed the problem (3.1) in a larger problem. In particular let H : © x [0,1] —
IR" be such that:

1) H(6,1) = F(6). (3.2)
2) There exists at least one known 6y € IR™ which is a solution to H(:,0) =0, i.e.,

H(60,0) = 0. (3.3)

3) There exists a continuous curve (8(),A) in IR™ x [0, 1] such that
H(6(X),A) = 0 for A € [0, 1] (3.4)
with
(6(0),0) = (60,0 (3.5)
4) The space © x [0,1] has a differential structure so that the curve (6()), A) is differentiable.

A homotopy algorithm then constructs a procedure to compute the actual curve ¢ such that the

initial solution #(0) is transformed to a desired solution (1) satisfying

0= H(8(1),1) = F(6(1)). (3.6)

Differentiating H(6()), ) = 0 with respect to X to obtain Davidenko’s differential equation

OH dé oH
2ot 3.7)
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Together with 8(0) = 8o, (3.7) defines an initial value problem which by numerical integration from

0 to 1 yields the desired solution u(1). Some numerical integration schemes are described in [11,12].

1.

2.

10.

11.

12.

3-2
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4. The Homotopy Map and It’s Jacobian

If we define
vec(A.)

vec(B.)
vec(C.) |’
vec(D.)
then the cost functional of Section 2 can be expressed as J(6). The homotopy defined in this

L~
e

(4.1)

section is based on finding 6 satisfying

0= f(0) 2 %(9). (4.2)

It is useful to recognize that
Vj(e) = % = vecgi . (4.3)

Expressions for the partial derivatives 2L, 22 27 and £Z are derived in Appendix A. Here,
P p 9A.’ 8B, 3C. 3D, p

we cite only the final results. First, we assume that P, Q and Z satisfy

P=ATPA+R (4.4)
O=AQAT+V (4.5)
Z=QATP (4.6)
and note that P,Q and Z have the partitioned forms
b Py Py ~ [Qu Qu] 5 [211 212]
P=]% - , =12 4 , Z=15; H , 4.7
[Psz Pn] @ QL QOn Zn Zn (4.7)

where the (1.1) and (2.2) blocks of each matrix are respectively n x n and n. X n.. With this in

mind, the cost derivatives are given by

gi =277 (4.8)
3;37 = 2(PLVis - BLBDV; + P BV,
+ Z%,CT - 25,CTDT) (4.9)
ggc = 2(—~R%,Q12 + R:D.CO12 + R:C.Q2
+BTZ} - D*BTZ3,) (410)
ggg = 2(~RLQuCT + B2 D.CQuCT + Ry C.QTCT

- BTh,Viy + BTPyBD.V, — BT P2 BV,
- BTZLCT + R,D.V,). (4.11)
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Definition of the homotopy map h(6,A)

To define the homotopy map we assume that the plant matrices (A, B,C, D), the cost weighting
matrix (R;, Rz, R12) and the disturbance matrices (V;,V;,V13) are functions of the Homotopy

parameter A € [0,1)]. In particular, it is assumed that

A(A) B(A)| _ |40 By A; Byl A0 Bo
[C(A) oM =lco Do (e ol-le o ) (4.12)
Ri(X) Ru(")]
Lar(M)LT(A 4.13
|20 Ry | = zaoviey (8130
where
Lr(A)=Lro + AMLpr,s — Lro) (4.13b)
and Lgry and LR, ; satisfy
R R
LroL¥, =[ 1.0 ”'0] 4.13
ROLRo R120 Ry ( c)
R R
LpLT =[ r/ “vf], 4.13d
R,f~R,f R’lr2,f Rz,f ( )
Vi(d) Via(A)
= Ly(MLT() 4.14
VA ViG] = s (4140)
where
Lv(A)=Lvo+ ALv,y — Lvyp) (4.14b)
and Lvyp and Ly, satisfy
Vi Vi
Ly, LYo = [V:Tzoo ‘}:f] (4.14c)
iy W, 1]
Ly, LT, = ! .
Vitivg [Vsz,j Vao (4.14d)

Note that (4.12)-(4.14) imply that A(0) = A¢ and A(1) = Ay, B(0) = By and B(1) = By, etc ..
and it is understood that Ay, By, ... were referred to previously simply as A, B,.... The change in

notation is simply for convenience.
The homotopy map h(8, ) is defined by

vec(Ha, (6, )

)
h(0,)) = vec(Hp, (6, ’\); (4.15)
vec(Hp, (8,)))
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where

Ha, (8,0 =2Z],

Hp,(8,)) = 2(PEVi2 -~ PLBD.Vy + PpB.V;
+Z5cT - z5cIDT

He,(8,)) = 2(~R%Q12 + RaD.CQrz2 + Ry CQ2:
- BTZ] - DTBTZ},

Hp,(8,)) = 2(-R,Q1CT + RyD.CQuCT + R, C.QT,CT
- BYP Vi + BTP1BD.V; - BT P, B.V,

- BTZLC" + R,D.V,).

The Jacobian of the homotopy map

We now consider that computation of 7h(#, A)¥, the Jacobian of h(6, X). Note that

oh Oh
T _ |22 2=

Recalling that @ is defined by (4.1), such that for some integers k and ¢, §; is given by
0_,' = Q¢ ks 91' = bc,k“ 0_7' = C¢,kyy OT 0]‘ = dc,k,-

It follows from (4.6) that 82 is of the form

... vec( 52 HA:)--~Vec(ab?, Hy,)...vec(52 HAC)...vec(ﬁ?:HAc)

Ba. ., kg Oce,x,
dh _ ...vec(aaileBC)...vec(Ti:HBc)...vec(acikl HB‘)...vec(adj“ Hg)
09 ...vec(é-ai—“Hc‘)...vec(ﬁHcc)...vec(acfh Hcc)---VeC(Wi;Hcc)
..vec(aaf'hl HDc)"'VeC(E%%"'HDc)'"Vec(aci.‘ HDC)---VeC(a—d?IHDC)
and %% can be expressed as
vec(Z Ha,)

Oh vec(Z Hg.)
x| ved(FHe.)
vec(a%H D.)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

Below, we develop explicit expression for the derivative terms appearing on the right hand sides of

(4.22) and (4.23). We use the notation
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Differentiating (4.4)-(4.6) with respect to 6; yields

PU) = ATPD A 4 (AU PA + ATPAY) + RO)) (4.26)
QW) = AGWAT 4 (ADGAT + AQAWNT 47y (4.27)
70 = GWATP + QADT B 4 QATPY) (4.28)

where expressions for the derivatives A(), R() and V(9 are given by (B.20)-(B.28) of Appendix B.
Similarly, differentiating (4.4)—(4.6) with respect to A yields

P — - 2T . . -~ b

P=ATPA+(A PA+ ATPA+R) (4.29)
O = AQAT + (AQAT + AQA+ V) (4.30)
. L e - - =T . -

Z=QATP+QA P+ QAP (4.31)

where expressions for fi,fl and V are given by (B.29)-(B.33) of Appendix B.

Before presenting the desired derivative expressions we define

K, (29) = 224" (4.32)
Hp (P9, 29) = 2P Vi - B BD.V; + P B.V;
+ 297 et _ 797 cTpT) (4.33)
HE (@9, 29)) = 2(-R,Q%) + RaD.CQYY) + R C.QY)
_ BTz’ - pTBTZY") (4.34)
Hpy (P9, 09, 20)) = 2(-RLGDCT + R,D.COVCT + R0 T
- BTz cT) (4.35)

Notice that the right hand sides of (4.32)-(4.35) are essentially identical in form to the right
hand sides of (4.16)—(4.19). The difference is that P,Q, and Z have been replaced by P(), Q(5)
and Z(9) and the last term (2R, D.V;) in (4.19) has no counterpart in (4.35).

Derjvatives with Respect to b, 4,

Differentiating (4.16)~(4.19) with respect to b, (= ;) gives the following.

OHa, _ g1 (5t (4.36)

Obe ke ¢

OHp,

= Hp (PD, 200 4 2Py ESD V) (4.37)
c,k¢
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BHe. _ gy (@W,29) - 2DTELY, 2, (4.38)
0Bkt ¢ vxme
OHp. _ gi (P90, 7)) - 2BT B, EXO. v, 4.39)
chk[ = 4dp, y ] )_ 1284y xn, ¥2- ( -
Derivatives with Respect to ¢, 4s
Differentiating (4.7)-(4.9) with respect to 8;(= c.,k¢) gives the following.
OHy, _ H' (Z9) (4.40)
Oce ke ¢
gz B = Hy, (P, 209) - 27T ELH. DT _ 2(00) 2 + 0Z0U)B, (4.41)
Ole. _ pt, (@0, 29) + 2R BV, O (442)
Occ ke ‘ m e
OHp. _ yr (pi) 36 50 (k0 AT T
ey = Hp (P,QY, 2V + 2R, E, 7 Q12 C (4.43)
c,
Derivatives with respect to d. is
Differentiating (4.7)—(4.9) with respect to d. i gives the following.
O0H 4 oy
e = HY) (29 4.44
adc,kl Ac( ) ( )
OHp, _ yr (p() 5()y_ 9pT pE*O
S = Hp (PO, 29) — 2PLBEL, Vs (4.45)
OHc. _ pi (a0 30) (k0 o5
Ezi—kl = .}‘{Cc (Q ,Z ) + 2R2Enu Xn,CQl2 (4.46)
0H N TP ~ -
S = Hp (PD,Q0,20) + 2AREL, COuCT + BT PuBES, Vs
+ Ry Ef:':)n,vz)- (4.47)
Derivatives with Respect to A
Differentiating (4.7)—(4.9) with respect to A gives
3HAc =
e = 1 (2) (4.48)
aHBc S
TN Hy (P,Z)
+2(PEVi; — PLBD.V; ~ PLBDV: + P B.V:)
+ ZECT - ZLeIDT) (4.49)
(')]{Cc sz
a - Hel@:2)
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+ 2(-R},Q12 + R2D.CQ12 4+ R2DCQ1z + RyCcQ2

+BTZ] - DTBTZ]) (4.50)
= H}, (P,0,2)

+2(-RLQ0uCT - RLQu: CT

+ RyD.CQuC” + RyD.LLQuCT + RyDLQ1CT
+ R,C.CQLCT + R,C.QT,CT)
+2(-BTPy Vi - BT Py,

dHp,
)

+ BTPyBD.V; + BTP1BD.Vs + BY P11 BD.V;
— BTP;B.V; — BT P, B.V,)
-2BTZYcT - BTZ,,CT
+2(R2D.V; + Ry D.Vy) (4.51)

where from (4.12)—(4.14)

A B|_[A;-4 Bs-Bo
[c D] = [c,-co C,-Co] (4.52)
Rl sz T
[R'lr2 B, ] = LgrLr (4.53a)
where
Lr=1Lgr;s - Lro (4.53b)
Vi Vo], T
[VxTz V. ] =LyLy (4.54a)
where
Ly = Ly — Ly,. (4.54b)

The homotopy Jacobian can now be computed using (4.20) with (4.22) and (4.23) and (4.32)-
(4.51). Note that the primary computations involve the computation of the solutions of the Lya-
punov equations (4.26), (4.27), (4.29) and (4.30). Significant computational savings can be made
by solving these Lyapunov equations in a basis in which the A matrix is diagonal (or nearly diago-
nal). This requires transforming the corresponding forcing terms into this basis. But it is seen by
(B.20)—(B.33) of Appendix B that these forcing terms are very sparse. Hence this transformation
does not have to be expensive. In addition, it is required that the solutions of the Lyapunov equa-
tions be transformed into their original basis before substituting into the expressions (4.32)-(4.51).

A close examination of these expressions shows that for problems in which ny, << nz,n, << n,
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and/or n. << n, significant computational savings can be made by not actually performing the
matrix multiplies to transform the solutions into their original basis until after substituting the
transformations into (4.32)-(4.51). Appendix H gives the details of efficient computation of Hy for
the corresponding continuous-time problem. A nearly identical procedure has been implemented

for the discrete-time problem considered in this report.
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5. Reduction of the Dimension of the Controller Parameter Vector (¢)

The homotopy function H(#, )), described earlier, was defined to solve the H; optimal reduced-
order dynamic compensation problem for discrete-time systems. The vector 6 was defined such
that it contained each of the elements of the controller matrices, 4., B, and C.. However, for
computational efficiency it is desired that @ be as small as possible. Hence, we desire to represent
the controller matrix with the fewest parameters possible (i.e., we desire § to have the smallest
di_x_nension possible). The minimal number of parameters pmin With which a compensator can be
represented is given by [1,2]

Pmin = ne(nu + 1y) (5.1)

One canonical form which allows representation of a controller with a minimal number of
parameters is the modal form described in [3]. This form will be called here the Second-Order

Polynomial (SP) form. For this parameterization a triple (A, Bc,C.) has the following structure.
A. = block- diag{Ac1,Ac2...,Acr} (5.2)

where A.; € IR**? for i € {1,2,...,7} and each A.; (with the exception of A, if the row
dimension of A, is odd) has the form
0 1
A= [a(l) (2}] (5.3)

to allow for either a complex conjugate set of poles or two real poles. B. is completely full and

CC = [CC,I’ Cc,21 ey Cc,r] (54)
where C.; has the form
10
* %
Cc"' = - (5!5)
* %

The controller canonical form described in [4,5] also allows representation of a controller with
a minimal number of parameters. For single-input, single-output (SISO) systems in controller

canonical form the A, matrix is a companion matrix. In particular, A. has the form

0100 ---0
0 010 0

A.= 10 0 0 1 0f . (5.6)
N R
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In addition,

o

B.=|: (5.7)
0
1

and C, is completely full. A dual form of the controller canonical form is the observable canonical

form [5).

It is also possible to represent the controller in a basis where the number of free parameters p
satisfies

Pmin < P < Pmax £ nc(nc +n, + ny)- (5°8)

One such basis is the tridiagonal basis [7-11] in which the controller state matrix is constrained to

have nonzero elements only on the diagonal, the super-diagonal and the sub-diagonal. That is,

* %
* ok * 0
Ac = * * (5.9)

* %

B, and C, are completely full. For this form the number of free parameters is given by

P = Pmin + (3nc - 2)

A common feature of each of the above bases is that they are described by simply constraining
certain elements of the controller (or plant) matrices to constant values (e.g., 1 or 0) while allowing
the remaining parameters to have arbitrary values (A., B.,C.). Hence, the corresponding parameter

vector (8p), gradient vector (Js,,) and Hessian matrix (He,p) are given by

6, = T'0 (5.10)
Jop=TJs (5.11)
Hgp =TH T (5.12)

where I is an elemental matrix (i.e., each row has only one nonzero element and this element has
unity value). It should be noted here that Hy , can be computed more efficiently than shown in
(4.64). Since it is not necessary to construct the large Hessian Hy to compute the smaller Hessian

Hg,.
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6. Overview of the Homotopy Algorithm

This section describes the general logic and features of the homotopy algorithm for H; opti-
mal reduced-order control. It is assumed that the designer has supplied a set of system matrices,
St = (Ag,B;,Cy,Dy,Ry,4,R2,4, Va1, V2,1, V12,7) describing the optimization problem whose so-
lution is desired. In addition, it is assumed that the designer has chosen an initial set of related
system matrices So = (Ao, Bo, Co, Do, R1,0,R2,0,V1,0,V2,0,V120) that has an easily obtained opti-
mal controller (A0, Be0,Ce0, De o) of order nc. The initial system So can be chosen to correspond
to a low-authority control problem as described in Appendix I since if Ry;, or V} o are of the appro-
priate structure and Ay is stable, the corresponding LQG controller is nearly nonminimal and can
hence be reduced to a nearly optimal n*order compensator using, for example, balanced controller

reduction [1]. The reader is referred to Appendix I for additional details.

Below, we present an outline of the homotopy algorithm. This algorithm describes a predic-
tor/corrector numerical integration scheme. There are several options to be chosen initially. These
options are enumerated before presenting the actual algorithm. Notice that each option corresponds

to a particular flag being assigned some integer value.
Controller Basis Options:
basis = 0. No basis (i.e., all elements of the controller matrices are considered free.)
basis = 1. Tridiagonal Basis.
basis = 2. Second-Order Polynomial Form.
basis = 3. Controller Canonical Form.
Note that for basis = 0 or 1, p > pmin While for basis = 2 or 3, p = pmin-

Prediction Scheme QOptions:

Here we use the notation that Ag,A_;, and A, represent the values of A at respectively the
current point on the homotopy curve, the previous point and the next point. Also, 6, = df,/dx

and is the solution of Davidenko’s differential equation (4.7), rewritten here as
Hgp0,(A)+ Hy = 0. (6-1)
If p = Pmin, Hsp is generally invertible, then 6, (}) is given exactly by

6.(N) = —H; }H. (6.2)
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If p > Pmin, then Hy, generally has rank pmin and 6,(}) is approximated by the least squares
solution of (6.2) or

" _ 2(-)-1 0 T
o,,_V{ 0 O]U (6.3)
where it is assumed the Hy , has the singular value decomposition
Hop=U [Eo" 8] VT, o € IRPminXPmin (6.4)

Note that for p = pmin (6.3) and (6.4) are equivalent.
pred = 0. No prediction. This option assumes that 6,();) = ,(Xo).

pred = 1. Linear prediction. This option assumes predicts 8,(); ) using only 8,(Ao) and 8,'(Xo).
In particular,

Bp(M1) = Bp(0) + (A1 = X0)B5'(o) (6.5)

pred = 2. Cubic spline prediction. This option predicts 8,(A;) using 65(Ao), 8p'(Ao), Op(A-1)

and 6,'(A-1). In particular,
0p(M1) = ag + a1 dy + @z ? + azh® (6.6)

where ap, a1, a; and a3 are computed by solving

1 0 1 0 6,(A_1)
A 1ox 1| |enn)
[ao ay a a3] A:—l 2)‘2_1 ,\é 2Ag = op(AO) (67)

Note that if this option is chosen, then at the initial algorithm prediction step 8,(A-;) and

0,(A-1) are not available, in which case linear prediction is used.

Correction Options:

Here we assume that the homotopy parameter has a fixed value Ag. The vector 8, represents
the current approximation of the parameter vector at A = A9. Each of the options corresponds to

updating #, using the formula
0, — 6, + AG, (6.8)

where

Al = =Gy pJop (6.9)
for some choice of Gy p.
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corr = 1. Newton correction. In this option, if p = pmin,
Ga,p = Hﬂ,p-l (610)
while if p > pmin,
Gop=V(Zt +a’) ' EUT (6.11)

where o is some (small) scalar and (U,V,X) denote the singular value decomposition of Hs,p

~ such that
Hyp,=UZVT. (6.12)

It can be shown that if Gy p is given by (6.11), then Af, minimizes

1
SHop 50, + 6, +a?126,|) (6.13)

Hence, Af, is essentially a “Newton correction” that is relatively insensitive to singularities or

near singularities in the Hessian, Hg ;.

corr = 2. Quasi-Newton correction. In this option, Ggp denotes the estimate of H, ; using
only gradient and cost information. For the algorithm presented here the BFGS inverse Hessian
update is used [2].

Outline of the Homotopy Algorithm

Step 1. If basis > 1, then transform the initial controller (A., Bc,0, C.) to the chosen basis

and let 6y, p be the corresponding vector of free parameters.

Step 2. Initialize loop = 0, A = 0, AX € (0,1], S = So, 8y = o,, and compute the cost J
and the cost gradient Jg , corresponding to S and the controller described by 6,.

Step 3. Let loop = loop+1. If loop = 1, then go to Step 5. Else, continue.

Step 4. Advance the homotopy parameter and predict the corresponding parameter vector ¢

as follows.
4a. Let \p = A
4b. Let A = Ao + A,
4c. If pred > 1, then compute 8,,(Xo).
4d. Predict 8,()) by using the option defined by pred.
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4e. If the normalized gradient Jy p||Gs pll/ A8, satisfies some preassigned tolerance, then
continue. Else, reduce A and go to Step 4b.

Step 5. Correct the current approximation 8, to the optimization problem defined by § using
the option defined by corr until the normalized gradient,

Jopl|Go pll
1. 1,
AT, (6.14)

satisfies some preassigned tolerance.

Step 6. If A = 1, then stop. Else, go to Step 3.

The above algorithm assumes monotonicity of the solution curve as a function of the homotopy
parameter A. However, it is not difficult to modify the algorithm so that the variable parameter is
the arc length as discussed in [3,4] since this modification would still only require the computation
of Hg and H,. The modified algorithm would not require monotonicity of the solution curve.

However, so far in our computational experience the solution curve has always been monotonic.

Note that if p = pmin and corr = 1, then the corrections of Step 5 correspond to Newton
corrections. Hence if the prediction tolerance used in Step 4 is sufficiently small, then, entering
Step 5, 8, will be close enough to the optimal value ; so that the quadratic convergence properties
of Newton’s method [2] can be realized. In practice, this quadratic convergence property is not
always realized due to numerical ill-conditioning associated with the minimal parameterization of
the controller. This ill-conditioning is illustrated and discussed further (in the context of continuous-

time systems) in Appendix H.
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7. A Design Example and Some Rules of Thumb

This section illustrates the design of a reduced order compensator for an axial beam with
four disks attached as shown in Figure 7.1. This example has been considered in several previous
publications [1-7] and has become a standard benchmark example. The section closes with some

general rules of thumb that will aid the control designer in most efficiently utilizing this algorithm.

The basic control objective for the four disk problem is to control the angular displacement
at the location of disk 1 using a torque input at the location of disk 3. It is also assumed that a
torque disturbance enters the system at the location of disk 3. An 8th order discretized model of
the fourdisk plant with nominal performance weights and disturbance covariances is generated by

the function diskmod.

The design philosophy adopted here is that the scaling q2 of the nominal control weight Rz
and the nominal sensor noise covariance V; are simply design knobs used to determine the con-
troller authority. The system costs are computed assuming that V,=0. This general philosophy is
actually motivated by insights into LQG theory. However, it will suffice here to simply note that
this philosophy was used successfully on two hardware experiments involving control design and

implementation [10-13].

It is now assumed that we are in the MATLAB environment. In what follows the reader is
walked through the design process for a 4th order controller. The command sequences are presented
after the prompt “>” and after the commands some of the resultant output is displayed. Explana-
tory text is interspersed to clarify the motivation of the command sequences and the interpretation

of some of the output.

We begin by using diskmod to generate the design plant and nominal weights and covariance.
> diskmod

discretizing a, b, and vl

The following variables are now loaded into memory.
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>' who

Your variables are:
a c ri r2 vl v2
b d ri2 ts vi2

We choose to display numerical data using the following format.

> format short e

We now begin the search for an authority level that will give us a nearly optimal controller by
balanced controller reduction. We commence this process by choosing the initial scaling q20 of R,
and V; as follows.

» q20 = .1;

We use dlqg to design an LQG controller and then check the eigenvalues of the product phat*qhat
to see if their is any gap between the 4th and 5th eigenvalues (ordered in descending order of
magnitude). Note that the warning after the call to dlqg in this case is not important.

> [ac,bc,cc,dc,costslqg,phat,qhat] = ...

dlqd(a,b,c,d,rl ,q20%r2,r12,v1,q20%v2,v12,1);

Warning: Q is not symmetric and positive semi-definite

> -sort(-eig(phat*ghat))

ans =
1.3554e+01
1.2377e+00
8.0067e-01
1.3682e-01
1.0451e-01
1.7751e-02
1.0585e-02
4.,9872e-03

Note that their is no gap between the 4th and 5th eigenvalues indicating that balanced controller
reduction will probably not yield a nearly optimal reduced-order controller. However to verify this
we will actually compute a 4th order controller using balanced controller reduction and compare
it’s cost with that of the LQG compensator, which is contained in the vector costslqg.

> [ac,bc,cc,dc] = balcred(ac,bc,cc,dc,phat,ghat,4);

>costs=dqcosts(ac,bc,cc,dc,a,b,c,d,r1,q20*r2,r12,
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v1,q20%v2,v12);
> costslqg
costslqg =
2.1047e-02 1.6027e-02 0 4.2135e-04 3.7495e-02
2> costs
costs =
2.5838e-02 2.0623e-02 0 4.2135e-04 4.6882e-02

The total cost of the LQG compensator is 3.7495e-02 while the cost of the reduced order controller
is 4.6882e-02. The vast differences in these costs is another indication that the reduced order
controller is not nearly optimal. We will now repeat the above process with a higher value of q20,
i.e. the LQG controller is of lower authority.
> q20 = 10;
> [ac,bc,cc,dc,costslqg,phat,ghat] = ...
dlqg(a,b,c,d,r1,q20%r2,r12,v1,q20%v2,v12,1);
Warning: Q is not symmetric and positive semi-definite
> -sort(-eig(phat*qhat))
ans =
.1835e+02
.1594e+00
.6033e-01

4
2
5
4.33915e-01
4.6232e-02
3.7616e-02
4.4658e-03
4.4134e-03
> [ac,bc,cc,dc] = balcred(ac,bc,cc,dc,phat,qhat,4);

>costs=dqcosts(ac,bc,cc,dc,a,b,c,d, r1,q20%r2,r12,v1,

q20*v2,v12);
> costslqg
costslqg =
2.0046¢-01 4.1697e-01 0 2.7474e-03 6.2018e-01
> costs
costs =
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2.0137e-01 4.1748e-01 0 2.7474e-03 6.2160e-01

This time there is an order of magnitude gap between the 4th and 5th eigenvalues of phat*qhat
and the costs of the LQG and reduced-order controllers are nearly identical. This indicates that
the 4th order balanced controller is nearly optimal. This deduction could also be made by gener-
ating a performance curve for the LQG controller (by varying q20) and superimposing it with the
performance curve for the corresponding 4th order balanced controllers as shown in Figure 7.2. If
for a given q20 the two controllers have essentially the same state and actuation costs then the 4th

order balanced controller is probably nearly optimal.

If the 4th order balanced controller is nearly optimal then by using a few Newton corrections
(say, 1 to 6) we should be able to converge to the optimal controller (practically, the controller
that satisfies a small tolerance on the normalized norm of the cost gradient). This is verified
below. Function nwtpar is used to intialize the algorithm parameters to their default values while
nwtprint is used to display these default parameters.

> par = nwtpar;

> nwtprint(par);

. Will print intermediate results.

. gradient prediction tolerance = 1.00000e-05

. gradient correction tolerance = 2.00000e-08

. gradient final tolerance = 2.00000e-08

1

2

3

4

5. minimum homotopy step size = 1.00000e-06

6. maximum number of corrections allowed = 10.000000
7. Will use Hessian from last correction for prediction.
8. Will not use line search.

9. Will let program run automatically.

10. initial step size = 1.,000000

11. No basis is assumed for the controller.

At this time the user has the option of changing any of the default parameters. However, we will
be content with them. The default parameters will also be printed by dnwthom. In the following
call to dnwthom the initial and final system parameters are identical so that the algorithm will
only perform correction loops.

> [ac,bc,cc,dc,val,par] = dnwthom(ac,bc,cc,dc,
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a,b,c,d,r1,q20%r2,r12,v1,q20%v2,v12,
a,b,c,d,r1,q20%r2,r12,v1,q20*v2,v12,par);
Will print intermediate results.
gradient prediction tolerance = 1.00000e-05
. gradient correction tolerance = 2.00000e-08
gradient final tolerance = 2.00000e-08
minimum homotopy step size = 1.00000e-06
maximum number of corrections allowed = 10.000000
Will use Hessian from last correction for prediction.

Will not use line search.

©w 0o N O 0 b W NN =

Will let program run automatically.

[
o

. initial step size = 1.000000

11. No basis is assumed for the controller.

Computing Initial Hessian...

Inverting Hessian...

sk*kk INITIAL PARAMETERS #*##*%%

normalized normalized normalized
cost cost0-cost gradient gradient del-theta

6.21598e-01  0.00000e+00 7.35784e-07 5.54898e-010.00000e+00

The algorithm is still in process but we note here that the initial
normalized gradient value of 7.36e-07 is fairly small. The general
rule is that values < to about 2.0e-08 are very

small.

sxkxkekkxs CORRECTING #kkhkkksk

#%%% lambda = 1.0000e+00 ****

---------- Correction Iteration 1 -~--------
Computing Hessian...

Inverting Hessian...

** correcting: i = 1.000000, lambda = 1.0000e+00 *x*
normalized normalized normalized
cost costO-cost gradient gradient del-theta

6.21598e-01  0.00000e+00 7.35784e-07 5.54898e-01 0.00000e+00
6.21515e-01 1.33389e-04 7.34790e-08 5.5425%9e-02 1.92813e-03
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The normalized gradient correction tolerance is: 2.00000e-08

With the algorithm still in progress we note that the top line denotes the initial convergence
parameters before the first correction while the bottom line denotes the value of the convergence
parameters after the correction. It is seen that both the cost and gradient were improved (i.e.,
decreased by the first correction iteration). However the normalized gradient is still not below its
maximum tolerance of 2.0e-8.

--------- Correction Iteration 2 ---~=<<--

Computing Hessian...

Inverting Hessian...

** correcting: i = 2.000000, lambda = 1.0000e+00 **
normalized normalized normalized
cost costO-cost gradient gradientdel-theta

6.21515e-01 1.33389e-04 7.34790e-08 5.5425%e-02 1.92813e-03
6.215156-01 5.92847e-07 2.33195e-10 1.77478e-04 1.86134e-04

The normalized gradient correction tolerance is: 2.00000e-08
doubling step size to O

»x%x Exiting DNWTHOM with lambda=1. #**x

The correction of the initial 4th order balanced controller converged in 2 iterations. This clearly
indicates that the balanced controller was nearly optimal. The controller (ac,bc,cc,dc) is now the

optimal 4th order controller for the scale factor q20.

We now set q2=1 and use the dnwthom to deform the initial controller into a higher authority
controller. We show some of the beginning output of dnwthom.
> [ac,bc,cc,dc,val,par] = dnwthom(ac,bc,cc,dc,
a,b,c,d,r1,q20*r2,r12,v1,q20%v2,v12,
a,b,c,d,r1,q20*r2,r12,v1,q20*v2,v12,par);

*#44x* INITIAL PARAMETERS *****
normalized normalized normalized
cost cost0-cost gradient gradient del-theta

6.21515e-01 0.00000e+00 2.58673e-10 1.73424e-04 0.00000e+00
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BEEEEEEE PREDICTING #%kdkkkkkk

*+xx lambda = 0.0000e+00 ****

** dlambda = 1.0000e+00 **

Computing Pseudo-Inverse of Hessian!

number of sing. vals. retained = 9.000000

*+ predicting: lambda = 1.00000e+00, dlambda = 1.00000e+00, **
normalized normalized normalized
cost cost0-cost gradient gradient del-theta

6.21515e-01 0.00000e+00 2.58673e-10 1.73424e-04 0.00000e+00
1.72524e-01 2.60247e+00 8.79235e-05 5.89473e+01 1.95698e-02

The normalized gradient prediction tolerance is: 1.00000e-05
!tadjusting step size!!

dlambda = 5.0000e-01

#* predicting: lambda = 1.25000e-01, dlambda = 1.25000e-01, **
normalized normalized normalized
cost costO-cost gradient gradient del-theta

4.79497e-01 2.96182e-01 1.46945e-05 9.85177e+00 4.89245e-03
5.48829e-01 1.32438e-01 4.47514e-06 3.00030e+00 2.44622e-03

The normalized gradient prediction tolerance is: 1.00000e-05
sokkkokkkkkx CORRECTING #dkadkdk sk

*#%% lambda = 1.2500e-01 #**x*

--------- Correction Iteration 1 ~-----=---

Computing Hessian...

Inverting Hessian...

condH(1) = 3.36501e+07 [Hessian condition number]
condH(2) = 9.61511e-01 [free parameter singularity]
condH(3) = 2.05027e+00 [dthetap ratio]
** correcting: 1 = 1.000000, lambda = 1.2500e-01 *x
normalized normalized normalized
cost costO-cost gradient gradient del-theta

5.48829e-01 0.00000e+00 4.47514e-06 3.00030e+00 0.00000e+00
5.48807e-01 4.01362e-05 1.10053e-07 5.74753e-02 1.54763e-04
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.

sxxx Exiting DNWTHOM with lambda=1. **#*x

We now use valprint to check the performance parameters recorded in the vector val.
»valprint(val)

. final homotopy parameter value = 1.00000e+00

total # of Hessian calculations = 33.000000

. minimum # of corrections for fixed lambda = 1.000000

. maximum # of corrections for fixed lambda = 3.000000

. minimum homotopy step size = 3.12500e-02

D b W e

1.25000e-01

. maximum homotopy step size

The costs plotted in Figure 7.2 are computed using dqcosts as follows. Note that in the input
arguments v2 is set to zero.

>costs = dqcosts(ac,bc,cc,dc,a,b,c,d,r1,r2,r12,v1,0,v12);

>costs

costs =

5.5053e-02 7.8950e-02 0 0 1.3400e-01

The optimal controller is listed below.

> ac

ac =
9.6632e-01 4.6790e-02 -1.1916e-02 -5.3926e-03
-3.0758e-02 9.6053e-01 7.4261e-03 -4.1006e-04
2.9294e-03 -8.6959e-03 9.9335e-01 8.7504e-02
1.3349e-03 5.5798e-03 -8.8247e-02 9.8980e-01

-2.9757e-02
9.2577e-02

-3.3036e-02
-2.8086e-02

cCc =
-8.6600e-02 6.4435e-02 1.6983e~02 -2.9795e-02
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> dc

dc =
3.4606e-02
Some Rules of Thumb

1. Choose the initial weights (R; 0, Rz0, R12,0,V1,0,V2,0,Va20) and the final weights (R s, Rz, y,
Ri2,4,V1,7,Va,1,Vi2,5) so that along the homotopy path the regulator and estimator poles have
the same order magnitude. That is avoid situations where the estimator poles are very fast while
the regulator poles are slow or vice versa. The algorithm will converge in these cases but the

convergence tends to be slow.

2. Our experience indicates that no constraints on the controller basis appear to yield better
numerical robustness than constraining the basis to tridiagonal form or some other basis. When
attempting a 6th order controller for the four disk problem constraining the controller basis to
tridiagonal form yielded very poor numerical robustness. However, when the controller basis was
left unconstrained the algorithm performed very well. This phenomena is discussed further in

Appendix H.

3. For better control don’t take huge steps between the initial and final system parameters. For
example don’t try to go from very low control authority to very high control authority all at once.

Take “reasonable size” increments. You may want to adjust the tolerances along the way to increase

the algorithm efliciency.
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8.1 Commands Grouped by Function

8-2

Initialization Routines

balcred balanced controller reduction
dlqg discrete linear quadratic gaussian design
Homotopy Algorithm
dnwthom discrete Newton homotopy algorithm
ntwpar set default parameters for dnwthom
nwtprint print parameters for dnwthom
valprint print algorithm run-time statistics
Controller Bases
ccf convert to controllable canonical form
(valid only for SISO controllers)
rnormal convert to real normal modal form
(a special case of tridiagonal form)
rpf convert to real (or second-order) polynomial form
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Costs

dqcosts

discrete costs

Closed-Loop Matrices

cla construct state matrix

clr construct performance weight

clv construct noise intensity or covariance
dclp construct discrete observability grammian
dclq construct discrete controllability grammian
dclz construct discrete Z matrix

GASD-HADOC
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Utility Routines

beam provide plant, noise statistics and perform weights
for a simply-supported beam

bodeplot plot magnitude and phase on same screen

c2dv discretize disturbance intensity

dlyap2 discrete Lyapunov solution using diagonal basis
dstable determine discrete stability

eigpq ordered eigenvalues of product PQ

to180 converts phase vector to lie in interval |- 180,180)

8-4
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balcred balcred

Purpose:

Compute a reduced-order controller using balanced controller reduction.

Synopsis:

[ac,be,cc) = balcred(ac0,bc0,cc0,pgram,qgram,nc)

Description:

Computes a controller (A., B.,C., D.) of order n. given an initial controller of greater di-

mension (Ao, Bco,Cc0,Dc0) and the corresponding observability and controllability grammians

(Pgram and Qgram)-

See also:

dlgg
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beam beam

Purpose:

Compute a continuous-time or discrete-time representation (including noise statistics and per-

formance weights) of a beam example.

Synopsis:

[a,b,c,d,r1,r2,r12,v1,v2,v12] = beam(nmodes,h)

Description:

Computes a continuous-time or discrete-time representation of the beam example described in

the following reference:

D.S. Bernstein, L.D. Davis and D.C. Hyland, “The Optimal Projection Equations for Reduced-
Order, Discrete-Time Modelling, Estimation and Control,” AIAA J. Guid. Contr. Dyn., Vol.
9, pp. 288-293, 1986.
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bodeplot bodeplot

Purpose:

Plot magnitude and phase information on same screen.

Synopsis:

bodeplot(fhz,mag,phase,titlename,axes)

Description:

Plots magnitude and phase on subplots that appear on the same screen. If axes is present, it

is the 2 X 4 matrix of axis limits for the magnitude and phase (i.e., axes = [axismag; axisphase].
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ccf ' ccf

Purpose:

Transform a single-input, multi-output system to controllable canonical form.
Synopsis:

[a,b,c,T,Tinv] = ccf(a0,b0,c0)

Description:

Transforms a single-input, multi-output plant to controllable canonical form and also returns

the transformation matrix and its inverse.
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cla,clr,clv cla,clr,clv

Purpose:

Construct closed-loop matrices.

Synopsis:
acl = cla(a,b,c,d,ac,be,cc,dc)
rel = clr(rl,r2,r12,c,cc,dc)

vel = clv(vl,v2,v12,b,bc,dc)

Description:

Function cla computes the closed-loop state matrix using (2.7). Function clr computes the
closed-loop performance weight using (2.9)-(2.10). Function clv computes the closed-loop distur-

bance intensity or covariance using (2.14)-(2.15).

See also:

dclp, dclq
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c2dv c2dv

Purpose:

Discretize a continuous-time disturbance intensity matrix.

Synopsis:

vd = c2dv(v,a,h)

Description:
Converts a continuous-time disturbance intensity V into an equivalent discrete-time covariance

(assuming a zero-order hold with sample period h) using

h
de/ ezp(As)Vexp(AT)ds.
0
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dclp, dclq, dclz dclp, dclq, dclz

Purpose:

Compute the discrete, closed-loop grammians and Z matrix.

Synopsis:
pcl = dclp(acl,rel)
qcl = dclg(acl,vcl)

zcl = dclz(pcl,gcl,acl)

Description:

Function dclp returns the closed-loop discrete observability grammian satisfying
P = AL PyAc + Ra.
Function delq returns the closed-loop discrete controllability grammian satisfying
Qet = ActQct A% + Ver.

Function dclz requires the outputs of delp and dclq to return the closed-loop discrete Z matrix
satisfying
ch = QC(A’E[PC('

See also:

cla, clr, clv
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dlyap2 dlyap2

Purpose:

Solve the discrete-time Lyapunov equation by transforming to the modal basis.

Synopsis:

q = dlyap2(a,v)

Description:

Computes the solution Q to the discrete-time Lyapunov equation
Q=AQAT +V

by transforming to the complex modal basis. If the input A is a column vector, then the system is

assumed to be in the diagonal basis and the eigenvalues are the elements of A.
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dnwthom dnwthom

Purpose:
Compute an optimal discrete-time controller using the Newton homotopy algorithm.
Synopsis:
[ac,be,ce,de,par,val] = dnwthom(ac0,bc0,cc0,dcO, ...
a0,b0,¢0,d0,r10,r20,v10,v20,v12, . ..
af,bf,cf,df,r1r,r2f,v1f,v2{,v12,par)
Description:

Computes an optimal discrete-time controller using the Newton homotopy algorithm described
in Section 6. On input, the vector par contains the variable algorithm parameters whose default
values are set using function nwtpar as follows:

par = nwtipar.

See the nwtpar reference pages for a detailed description of the elements of par. On output, val

is a vector containing descriptions of important run-time parameters. In particular,
val(1) = value of homotopy parameter on return
val(2) = total number of Hessian calculations
val(3) = min # of corrections for fixed lambda
val(4) = max # of corrections for fixed lambda
val(5) = minimum homotopy step size
val(6) = maximum homotopy step size.
val(7) = number of mega-flops required for run

val(8) = number of seconds required for run.

See also:

nwtpar, nwtprint
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dqcosts_ dqcosts

Purpose:

Compute each of the quadratic costs for a given discrete-time system.

Synopsis:

[costs, p22, q22] = dqcosts(ac,be,cc,de,a,b,c,d,rl,r2,r12,v1,v2,v12)

Description:

Computes the quadratic costs for the given discrete-time system. On return costs is a 5th order

vector whose elements have the following values:
costs(1) = state cost (zT R;x)
costs(2) = input cost (uT Ryu)
costs(3) = cross cost (22T R12u)
costs(4) = feedthrough cost (tr DT R, D.V3)
costs(5) = total cost (sum of the above).

The matrices p22 and q22 are respectively equal to the (2,2) blocks of the closed-loop observ-
ability grammian (P.,) and controllability grammian (Q¢). If the controller is an LQG controller,

then p22 = P and q22 = Q.

See also:

dpcl, dqcl, dcost
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dstable_ dstable

Purpose:

Determine the discrete-time stablility of a matrix.
Synopsis:
sflag = dstable(a)

Description:

Determines the stability of the matrix A in the discrete-time sense (i.e., are the eigenvalues
of the matrix in the closed unit circle). On return, sflag = 1 if A is stable and sflag=0if 4 is

unstable.

8-16 Octobier 1993 GASD-HADOC



Harris Corporation

eigpq eigpq
Purpose:
Return the ordered eigenvalues of the product of two input matrices P and Q.
Synopsis:
 eigpa(PQ)

Description:

Computes and prints the ordered eigenvalues of the product of two input matrices P and Q.
If the matrices are controller grammians (i.e., P and Q) the ordering can be used to determine the

order of a reduced-order controller.

See also:

balcred
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nwtpar. nwtpar

Purpose:

Set the default parameters for the Newton homotopy algorithms.
Synopsis:
par = nwtpar

Description:

Sets the variable algorithm parameters for the homotopy algorithms for optimal, discrete-time,
reduced-order controller design. A description of each of these parameters is given in the following

table.

See also:

nwtprint, dnwthom
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ALGORITHM PARAMETERS

No. Function Default Description
1 Print Option 1 Controls amount of input during the
execution of the homotopy algorithm
2 Prediction 1.0e+3 Maximum allowable gradient norm for
Tolerance prediction step.
3 Correction 1.0e-4 Maximum allowable gradient norm for
Tolerance intermediate correction loops.
4 Final 1.0e—4 Maximum allowable gradient norm for
Tolerance the final correction loops.
5 Minimum 1.0e-6 Minimum allowable step size of the
Step Size homotopy parameter.
6 Maximum 10 Maximum number of correction loops
Corrections for a fixed value of the homotopy.
parameter
7 Hessian for 0 0 uses Hessian from last correction step
Prediction for prediction. 1 computes a new Hessian.
parameter
8 Line Search 0 0 does not use line search

unless cost is not decreased.
1 always uses line search.

9 Automatic Run 1 0 lets program run interactively.
1 lets program run antomatically
10 Step Size .01 On input, initial step size
On output, last step size used
11 Controller Basis 1 1-no basis

2-tridiagonal form
3-second-order polynomial form
4-controllability canonical form
12 Prediction Option 1 0-no prediction
1-linear prediction
2-circular arc prediction
3-cubic spline prediction
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nwtprint nwtprint

Purpose:

Print the variable homotopy parameters.
Synopsis:

par = nwtprint(par)
Description:

Prints the information contained in the vector par that describes the variable algorithm pa-

rameters for the Newton homotopy algorithms.
See also:

nwtpar, dnwthom
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rnormal rnormal

Purpose:

Convert a plant to real normal modal form or a standard alternative. These forms are special

cases of the tridiagonal form.
Synopsis:

[at,bt,ct,dt] = rnormal(a,b,c,d)

or

[at,bt,ct,dt] = rnormal(a,b,c,d, ‘modal’)
Description:

The first call with four input arguments converts a plant to real normal modal form, i.e., the

transform of state matrix, at has 2x2 blocks of the form

-V wi
—wi —vi}’

If ‘modal’ is input as a fifth input argument, that at has 2x2 blocks of the form

0 1
—(e* +w?) 20"

See also:

trimats
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rpfx ' rpfx
Purpose:
Transform a system to second-order polynomial form.
Synopsis:
[A,B,C,T,Tinv] = rpfx(A0,B0,C0)
Description:

Transforms a system to second-order polynomial form and also returns the transformation

matrix and its inverse.
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to180 tol80

Purpose:

Transform a phase vector to lie in the interval [-180,180].

Synopsis:

phasel80 = tol80(phase)

Description:

Transforms a phase vector to lie in the interval [-180,180].

GASD-HADOC October 1993 823



Harris Corporation

valprint valprint

Purpose:

Print the run-time homotopy parameters.
Synopsis:

valprint(val)
Description:

Prints the information contained in the vector val that describes important run-time informa-

tion for the Newton homotopy algorithms.
See also:

dnwthom
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Appendix A: Cost Derivatives

In this appendix we consider the cost function J(A., B.,C.) defined by (2.4) or, equivalently,
(2.16). We derive expressions for 3}, 3;91, g(';l and —J—

Let £ denote the Lagrangian defined by (2.33) which is rewritten here as
L(Ac,B,Ce, D, P,Q) = tr[QR + P(AQAT +V - Q) + D; Ry Dy (42)

where

G=A0AT +V (A.3)

Then,
0J oL 9J _ 8T oJ 8J 0d 0T

A, ~ 94’ 9B, _9B.’ oC., oC.’ @D, oD, (A.da,b,c,d)
subject to the constraint
0= 9£ (A.5)
0Q
or, equivalently,
P=ATPA+R (A.6)
Now, let ¢ denote an element of A., B.,C. or D.. Then
0J _ oL 0R - 0A:.1 <:0AT OV 7] RT
— = — — —_— = —tr V. .
96 = 09 tr Q8¢+P(8¢QA +AQ3¢+6¢) +6¢tI(DC R,D.V;) (A.7)
or equivalently
aJ -9V _0A ;
3¢ =tr (Q + P-B_d) + 2—Z) + tr(D R,D.V;) (A.8)
where
22 G4TP. (A.9)
It follows from (A.8) that
0J 0K 0J _ 0K 0J _ 0K 0J _ 0K (A.10
94, _ 9A,’ 0B, @B, 0oC, oC.' 9D, 9D, 10)
where
K(Ac,Be,Ce, D, P,Q,Z) 2t1[QR(C., D.) + PV (B, D.) (
A1)

+2A(A¢, B.,C.,D)Z) + tr(DI R, D.V;)
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and from (2.7), (2.9)-(2.10), and (2.14)—(2.15)

- A-BD.C -BC,
A(BC,CC,DC) - [ BCC Ac - BCDCc] +
5 Ru Rys
¢y 1Dc =1 D y
B(Be, Ce: D) [sz Rn]
where
Ry =R, -CT™DIR}, - R);D.C + C*DYR,D.C
Ry2 = —Ry2C. + CTDT R, C.
Ry, = CTRyC,,
and - -
y Via Vn]
| 4 Bc, Cc,Dc = ¥, Y
( ) I:VI’lz‘ Vaz
where

Vi1 = Vi - BD,V;} - Vi, DI BT + BD.V, DT BT
Vi2 = V12 BT — BD.V2 B}
Va2 = BV, BY.

(A.12)

(A.13)

(A.14a)
(A.14b)
(A.14¢c)

(A.15)

(A.16a)
(A.160)
(A.16¢)

The desired derivative expressions will be derived using (A.10). The development proceeds by

considering each of the four terms in the right hand side of (A.1) and differentiating these terms

with respect to A¢, B, Cc and D.. It is assumed that P,Q and Z are partitioned conformably with

A, R and V such that

}3=[1:’u 1:312], A Qu Q:12]’ Z:[Z:” 2:'12

PY Py T QL Q2

tr QR

trQR = tr(Qu1 R + 2Q12 R}, + Q22 R2s).

Using (A.14), we may then write

Zyn 22

|

trQR = tr(Q11 Ry - 201:CTDTRY, + 0,,C" DT R, D.C)

+2tr(—Q12CTRY, + 01,CTR,D.C)
+tr(Q2:CT R, C.).

A-2 October 1993
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Differentiating (A.19) gives

Using (A.16), we may then write

Differentiating (A.25) gives

Differentiating (A.30) gives

GASD-HADOC
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d ==
A trQR=0 (A.20)
8 - -

EE"JQR =0 (A.21)

8 = - i ~ -
3C trQR = 2(-R5,Q12 + R:D.CQ1z + R:C.Q2;) (A.22)

c
- - - -
75, TR = 2= RHQuCT + B D.LCQuCT + RCoQf;CT). (A.23)
tr PV
tr PV = tr(Pan + 21312‘-/1’1; + }322‘722). (A.24)
tr PV = tI’(PnVl - 2P11BDCV1€ + P]]BDCVQDCTBT)
~ +2tr(PaB.V;; — PraB.V, DY BT) (A.25)
+tr(Py BV, BY).

9 bV =0 (A.26)
94, T '
aaB trPV = 2(PLVia — PLBD.V, 4+ Py B.V;) (A.27)

8 - -
3c. trPV =0 (A.28)
ag ttPV = 2(-BT P, Vi, + BT BD.V, — BT P, B.V,). (A.29)

tr /iZ
tr AZ = u[(A - BD.C)Zy; = BC.Z31 + B.CZ13 + (A. — B.DC.)Zy,) (A.30)

O 1Az =22} (A31

9A, TAZ = 243;. 31)

a% trAZ = 2Z%,cT - ZLcTpT) (A.32)
8 .- N .

ac. trAZ = -2(BTZ}, + DYBYZ1) (A.33)
o - R

3D, AL = -2BTZT CT. (A.34)
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tr DTR,D.V,

aic"D;r R;D.V; =0 (A.35)

a?ac trDTR;D.V; = 0 (A.36)

a‘Z‘c trDTRy DV, = 0 (A.37)

agctw} R;D.V, = 2R, D/ V;. (A.38)
J(Ac, Be,CcDe)

It follows from (A.10) and (A.11) with (A.20)-(A.23), (A.25)-(A.29), (A.31)-(A.34) and

(A.35)~(A.38) that

aJ
0A.
0J
0B,

aJ
aC.

N
oD,

e (A.39)

= 2(PEVi, - PSBD.V; + Py BV,

+ Z5CT - ZLcIDT) (A.40)
= 2(-R5Q12 + RyD.CQra + R2CeQor
- BTZL - DTBTZ]) (A.41)

= 2(-R5Q11CT + R2D.CQu1 + R:C.QT,CT
+ BTP,Vy; + BTPLWBD.V, — BTP;3B. Vs
- BTZLCT 4+ R,D.V2). (A.42)
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Appendix B: Closed-Loop Matrix Derivatives

In this appendix we present explicit expressions for the derivatives a%’-‘:_—, g—é, g—g, Q‘:\—i, 21;3, and
g—f\’ where
vec(A.)
_ | vec(B,)
b= vec(C.) (B.1)
vec(D,)
: |A-BD.C -BC,
A= [ B.C  Ac- BCDCC] ’ (B.2)
B _ f:fn 1:312
R = [R-lr2 Rzz] , (B.3)
where
Riy =Ry, -CT™DTR}, - R1;D.C +CT*DTR,D.C (B.4a)
Ri2 = —Ry2C. + CTDIR,C. (B.4b)
Rzg = CERch, (B.4C)
and
5 Vii Via
V=1s - B.5
[V1T2 Vzg] ( )
where
Vi1 =V - BD.V,s -V}, DI BT + BD.V, DT BT (B.6a)
Vi = VioBY - BD.V, BT (B.6b)
Vay = B{V, B (B.6¢)

It is assumed that the plant matrices (4, B,C, D), the cost weighting matrices (R, R12, R2)

and the disturbance matrices (V4, V)2, V2) are the following functions of A.

[383 gﬁg] B [ég 53]“([31 gi]‘ [2;’ f;‘;]) (B.7)
[ IIZ{ITIZ(({\)) 112;:((;\))] = Lr(VIE(O) (B.5a)

where

Lr(A\)= Lpo + MLr,s — Lro) (B.8b)
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and Lgo and Lg,; satisfy

where

and Ly and Ly, ; satisfy

Below, we use the notation

Note that from (B.7)-(B.9)

where

where

|

T _ | Ripo Rizp
LR,OLR,O = [R'lr2'o R2 0 ] (B8c)
R R
LpsLF ;= [ 1./ ”JJ B.8d
R,fLR f R'xrz,f Rz,j ( )
V1(2) Vn('\)] T
= Ly (M) Ly (A B.9a
[0 )] - v (B:92)
Lv(A) = Lv'o + /\(LVJ — Lv'o) (ng)
T _ | Vie Vizp
Lv,Ly, = [‘/1'12*'0 Vag ] (B.9¢)
T _ | Yy Vi
LVILVJ - [1/1'12‘.! Vio |- (B.94d)
o a OM
M2 (B.10)
A B)_[A;-4 B;-B,
¢ D] = [cf—c0 D,—Do] (B.11)
31 Rm _r T
[R'lrz R, ] = Lrlg (B.12a)
Lr=Lrs—Lrp (B.12b)
[V,T, Vz] = LyLy (B.12¢)
Lv = Ly - Lyg. (B.12d)

SR

The derivations of the expression for g—é, 59, and 'gTV,- are primarily based on the application

of the following derivative formulas. It is assumed that X is an n X m matrix.

B-2
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Derivative Formulas

3—;’;XA = [AG, Ylrow—i (B.14)
%‘AX = [A(:’i)]col-j (B'ls)
ij
Ed—XTA = [A(%, )]row—; (B.16)
Zij
Z%AXT = [A(:, 3))cot-i (B.17)
E%AXB = A(:,i)B(,?) (B.18)
L AXTB = A(,1)BG,) (B.19)
.’II"J‘
A
70
0 0
— (B.20)
[ 0 0 }
(B.21)
_[C(eai)]row-k [DC(£,)]row-&

where %< and a_?:AL are given respectively by (D.2.36) and (D.2.37) of Appendix D.

c, kit

GASD-HADOC

[0 _[B(:)k)]col—t
(B.22)
_O 32_:4:: - chD(:vk)]col—t’
[—B(;,k)C(£,:) 0
(B.23)
o 0
ok
96,
(B.24)
(B.25)
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aiz [ 0 [—RIZ(:) k) + M(:y k)]col—l ( )
= B.26
Occke | SYM  [CTRa(: K)ot + [B2Celks)row—t
. €T (:,0)[RaDC(k,:)-RL (k,)) T/ i
OR_ _ | +1cTDT Ratcir-Rustclciesy (2 ORCelk ) (B.27)
Odeke SYM 0
o7
08,
v __, (B.28)
Oa; ke
af/ 0 [VIZ(:al) - M(:ae)]col—k
= (B.29)
ekt SYM [VzB;r([, :)]row—k + IBCVZ(:Yg)]COl—k
1%
v 0 (B.30)
- BG.k)[VaDT BT (2,:)-vI(e,)) v Typ .
OV _ | 418D 0—vianBT(rsy DG FIV2Be (63) (B.31)
0d, ke
SYM 0
~ A 6A~
i)\
- [A-BD.C-BD.C -BC.
A - [ BcC _BcDCc] (B.32)
: o OR
R=55
B=|Pp By (B.33)
Rl2 R22
where
Ri = By - CTDTRY, - CTDTRY, - R1yD.C - Ry, D.C
+CTDTR,D.C + C*DIR,D.C + C*DTR,D.C (B.34a)
Riz = —=RysCe + CTDTR,C. + CTDTR,C, (B.34b)
1}22 = CERQCC- (B.34C)
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VEa
;o [V, v
v=|" n ' 12
Vis Va2
where
‘;/u = Vl - BDCV;E - BDch - VnD;rBT _ V]gD;rBT
+ BD.V,D.BT + BD.V,D.BT + BD.V,D BT
V12 = V12 BT — BDTV, BT — BD,V, BT
{/22 = BCV2BCT
GASD-HADOC October 1993
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(B.35)

(B.36a)
(B.36b)
(B.36¢)
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Appendix C: The Input-Normal Riccati Basis

The homotopy function H(#,)) described in Section 4 is defined to solve the optimal reduced-
order dynamic compensation problem for discrete-time systems. The elements of the vector
include parameters which completely describe the controller (A, B.,C., D.). For computational
efficiency it is desired that the vector # be as small as possible. Thus, we desire to represent the
controller (A., B.,C., D.), assumed to be minimal, with the fewest parameters possible. The results
of this section reveal that in a certain basis, which we will denote as the input normal Riccati basis,
the controller plant matrix A. is almost always completely characterized by its input and output

matrices B, and C.,.

Theorem C.1. For every minimal nt" order plant (4., B.,C., D.) there exists a similar-
ity transformation 77 and a positive matrix 2 = diag{w;}[, such that (4. = Ty 'A.TB. =
TI_IBC, C.=C.Ty, D. = Dc) satisfies

0=A.+ AT + B.BT - CJC, (C.1)
0=ATQ+ Q4. +CTC. - QB.BIQ. (C.2)
In addition,
w; = [(CTCe)ii/ (BB )]/ (C.3)
Acii = %[(CECc)u — (BB )ii] (C.4)

and if w; # w; for ¢ # j, then

Auss = w;i(1 4 wi)(BeBT)ij — (CICe)ij(1 4 wj), e (C.5)

Wi — Wy

so that A, is completely and uniquely determined by B. and C..

Proof. The minimality of (A, B.,C.) insures that there exists unique positive definite solu-

tions @ and P of

0=A.Q+ QAT + B.BY - QCIC.Q (C.6)
0=ATP+PA.+CIC.- PB.BTP. (C.7)

It is well known that there exist a transformation It such that

T;7'QT;T=1I.,, TfPT =Q (C.8)
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It follows from (C.6)-(C.8) that (A, B, C.) satisfies (C.1) and (C.2).

We now show by construction that (C.3)C.5) hold. First recognize that (C.1) and (C.2) are

equivalent respectively to

0 = Acij + Acji + (BeBY)ij — (CTC.)ij
0=w;Ac;j +wjiAcji + (C;TCC).-,- - ‘*’i‘*’:’(BcB;r)ij-

Letting ¢ = j in (C.6) gives (C.4) while it follows from (C.7) that for i = j
0 = 2w;Acii + (CTCe)ii — wi(BT B.)ii.
Substituting (C.4) into (C.11) gives
0 = —(B] Bo)iw! + [(CTCe)ii — (BB )iilwi + (CI Cois

which has positive solution w; given by (C.3).

Multiplying (C.9) by —w? and adding the result to (C.10) gives
0 = (wi — w;)Acij + (CTCO)is(1 + w;) = w1+ wi)(BeBY )i

which implies that if w; # w; for i # j then A ;; is given by (C.5). O

(C.9)
(C.10)

(C.11)

(C.12)

(C.13)

Definition C.1. If the minimal order plant (A, B.,C., D.) satisfies (C.1) and (C.2) of Theo-

rem C.1, then the plant is said to be in input normal Riccati form.

Remark C.1. Input normal Riccati form is similar to the input normal form of Moore (1]

which is further explored by Kabamba [2].
Now, define
2 £ diag{w; =

and H € IR™ ™" such that

hi: 2 (wi=w)™, i#]

Y 0, i=j.
or equivalently
Q £ diag(CIC,) diag(B.BT)™!
H2 (N, = In)/[No, 2 = QNo, + 1]

C-2 October 1993
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(C.15)

(C.16)

(C.17)

GASD-HADOC



Harris Corporation

where n,, € IR™*™ defined by
Npij=1 (C.18)

Then the following remark holds.

Remark C.2. lf w; # w; for i # j, then (C.4) and (C.5) are equivalent to

A.==[CTC. - B.BT)+ I, +[C¥C.(I+9Q)- (I, + )B.BIQ)+ H (C.19)

[

Proposition C.1. Let A and Z be in IR™*" with A diagonal. Then,

AZ=AxZ (C.20)

and

ZA=Z+ A", (C.21)

Remark C.3. It follows from Remark C.2 and Proposition C.1 that if w; # w; for ¢ # j, then

A, can be computed by

A. = 2[CTC.— B. BT+ I, +[CTC.4+(C.CT)+OT —(B.BT +Q+(B. BT +Q+(B. BT ) xQT1+ H (C.22)

=

where from (C.17) with (C.20) and (C.21)
H=(N, -I)/QY-Q+1,). (C.23)
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Appendix D: The Gradient of the Cost Functional for the Input Normal Riccati Basis

In this Appendix it is assumed that the controller (A, B:,Cc,D.) is in the input normal
Riccati form of Appendix C and is hence completely described in terms of B.,C. and D.. We
let J(B.,C.,D.) be the restriction of the cost functional J(A., B.,C., D.) defined by (2.4) or
equivalently (2.16) on the set of generic input-normal Riccati triples (A, B,C.). Also, define

vec(B.)
vec(C.)
vec(D,)

S

. (D.1)

Then, with some abuse of notation we can write the restricted cost functional as J(@). The

homotopy algorithms to be defined later will be based on finding @ satisfying

0=f(6) = %%(a). (D.2)

Now, recognize that
— 7(9\T J 87
vJ(@) = = | vecga- | - (D.3)

The next theorem present very useful expressions for g;az, gg, and 8201. This result is very similar
< [3 [+

to Theorem 2 of [D.1].

Theorem D.1. The derivatives ﬁl, Ql, and 27 are given by
58, * aC. 3D, g

N iNJ
55 = 5. +2Y ~ QZ9)B. (D.4)
aJ 8J
ac. = 3C. +2C(Z-Y) (D.5)
aJ _ dJ
aD. - oD, (D-6)
where Y € IR™™" and Z € IR™™" are symmetric and satisfy
_aJ
0= g +2Y +02) (D.7)
0=[(A. - B.BTQ)Z);, i=1,2,...,n.. (D.8)

Proof. Since the triple (A, B.,C.) is constrained to be in input-normal Riccati form, it

satisfies

0=A.+ AT+ B.BT —CTC. (D.9)
0=ATQ+QA. +CTC. - QB.BIq. (D.10)
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Following the proof of Theorem 2 of [D.1] we define the new Lagrangian
£(A., B.,C.,D.,P,Q,Y,2)
= L(A., B.,C.,D., P,Q) (D.11)
+tr[Y(Ac+ AT = CTC. + B.BY) + Z(AT2 + 2A. + CIC. - QB.B] 2)]
where Y and Z are n X n symmetric Lagrange multiplier matrices. Then

8J 87 87 _87 8 _dJ

ch - ch) 6Cc - aCC’ aDc - aDc (D.12a,b, C)
subject to the constraints _ _
oc oc
0= 94, 0=25- (D.13a,b)
Now, )
oc oJ
94, — o4 T 2AY + 22) (D.14)
and o
g—fz =A.Z+ ZAY - ZNB.BY - B.BT2Z (D.15)
which implies _
gf‘, =2A.Z - BcBIRZ)ii, i=1,...,n. (D.16)

Equations (D.7) and (D.8) follow respectively from (D.13a) with (D.14) and (D.13b) with (D.15).
Finally, (D.4)-(D.6) follow respectively from (D.12a,b,c). O

We now state a very important corollary which describes how to efficiently compute ¥ and 2

satisfying (D.7) and (D.8). For convenience, we define

s OL
La, = oA, (D.17a)
F£A.-BBI. (D.17b)
and rewrite (C.16) here as
Q £ diag(CTC.) diag(B.BT)™.
Corollary D.1. The matrices Y and Z in (D.7) and (D.8) satisfy
1
Y = -(EEA‘ + 27) (D.19)
zi=—f7 ) fijzi (D-20)

i=1
J#i
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and
0=20-027Z+ %(LAC -L%) (D.22)

which if w; # w; for 1 # j is equivalent to

1 -
zij = 2(£A°'ii EA"‘“), 1 # _] (D.23)

Ww; — Wy

~ Proof. Equations (D.19) and (D.20) follow respectively from (D.7) and (D.8). Since Y is
symmetric
0=Y-YT. (D.24)

Substituting (D.19) into (D.24) gives (D.22) or equivalently
1 C oy
0= (w; —wi)zij = 5(Lacy, = Lac, ) 1#7 (D.25)

which if w; # w; for i # j is equivalent to (D.23). O

Remark D.1. If w; # w; for i # j (D.20) and (D.21) are equivalent to

Z=2,+ 24 (D.26)

where
z, 2 %(z:,,c _LTyeH (D.27)
Zd .A—. - diag(F)'l * (FZ()) (D.28)

and H is given by (C.23), rewritten here as

HE (N, -L)/QT-0+1,) (D.29)
Expressions for the partial derivatives -2 54 357—, ot and —l are derived in Appendix A. Here,

we cite only the final results. First, we define
Z2QATP (D.30)

and note that P, and Z have the partitioned forms

5 Py P12] [Qu le] 5 [Zu 212]
P= D ’ A y Z= > ) D.
[Pu Py QY Qn VA AY (D.31)
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where the (1,1) and (2.2) blocks of each matrix are respectively n X n and n. x n.. With this in

mind, the cost derivatives are given by

0J >
IL = QZ%, (D.32)

8 . . ]
o7 = 2(PVia ~ PBDYV; + PuB.Y;

+Z5cT - ZL,cIpT) (D.33)
ggc = 2(-R5Q12 + B2D.CQ12 + R2C.Qn2
+BTZ], - DTBIZ}) (D.34)
ggc = 2(-R},Q11CT + R:D.CQ1,CT + R, C.QL,CT
- BTP,Viy + BYPBD.V, — BT P, BV,
- BTZLCT + R,D.V3). (D.35)
References
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Appendix E: The Homotopy Map and It’s Jacobian for the Normal Riccati Basis

As stated in the previous Appendix the objective is to find # satisfying
f(6)=0 (E.1)
where
1(8) £ vJ(6)" (E-2)
and J(8) denotes the restricted cost functional for the input-normal Riccati basis. In this section we

define a homotopy map to accomplish this task and show how to efficiently compute it’s Jacobian.

Definition of the homotopy map h(8,))

To define the homotopy map we assume that the plant matrices (A, B,C, D), the cost weighting
matrix (R;, Rz, R12) and the disturbance matrices (V;,V,,V)3) are functions of the Homotopy

parameter A € [0,1]. In particular, it is assumed that

(63 23] - [& 2]+ (& 2]-[% &) &3
(70 0= oy - R e
[1?5((?) ‘i/}:((:))] - [1;/;}:0 11/}:.80] * A([%{, ‘x/};',f] - [ ;{%;_’0 “/}22';)“])- (E.5)

Note that (E.3)-(E.5) imply that A(0) = A¢ and A(1) = A;, B(0) = By and B(1) = By, etc ...
and it is understood that Ay, By,... were referred to in the previous sections simply as A, B,. ...

The change in notation is simply for convenience.

The homotopy map h(6,)) is defined by

vec(HBc(e”\))
h(8,)) = | vec(Hc, (6,))) (E.6)
vec(HDc((),z\))
where
Hp (6,)) = 2(PLVy;, — PLBD.V, + Py BV,
+ZLCT - ZLCTDT + (Y - QZQ)B.) (E.7)
Hc,(6,)) = 2(-R5,012 + RyD.CQ1z + RyC.Q1;
- BTZI —DTBTZL +C.(Z2-Y)) (E.8)
Hp,(6,2) = 2(-RL,Q11CT + R D.CQ11CT + R, C.QT,CT
- BTPuVi; + BYPBD.V, — BTP3, BV,
- BYZLCT + R,D.V;). (E.9)
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Here, it is assumed that P,Q and Z satisfy

P=ATPA+R (E.10)
Q = A0AT + V. (E.11)
Z=QATP. (E.12)

In addition, Y and Z are given by

1
Y = ~(3£4. +92) (E.13)
Z=2,+24 (E.14)
where

Z, 2 %(cm -LY)+H (E.15)
Z4 2 — diag(F)™! « (F2o) (E.16)
La, 2097, (E.17)
F2 A.-B.BTQ (E.18)
Q £ diag(CTC,) diag(B.BY)™? (E.19)
HE N, -L)/QT-0+ 1) (E.20)

Note that (E.13) and (E.14) are equivalent to

0=La, +2(Y +02) (E.21)
0=[F Z)i, i=1,2,...,n.. (E.22)

Also, note that it follows from the results of the previous section that

h(8,1) = f(8)(2 wJ(8)")- (E.23)
Also, note that h(6,)) is the transposed gradient for the optimization problem with parameters
(A(Q), ..., Ri(A), ..., Vi2(Q)).
We now consider that computation of 7h(8,A)T, the Jacobian of i(#,)). Note that

dh Oh
T — —_— ——
vh(8,)) = 28 6/\] . (E.24)
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Recalling that @ is defined by (D.1), such that for some integers k£ and ¢, 8; is given by
0; = bk 6 =cexyy or 0 =dcg,. (E.25)

It follows from (E.6) that 9% is of the form

...vec(ralhﬂac)...vec( & HB‘)...vec(WahHB:)

acc k
dh 8 5 "
56 = ...vec(-échc)...vec(ac"‘l Hcc)...vec(ég%?Hcc) . (E.26)

. .vec(ﬁfl—‘HDc) . .vec(ac?_” Hp). --VeC(EZT‘HD,)

and % can be expressed as

T
5 vec(%Hcc) (E.27)

ok vec(-%HBc)
vec(%HD‘)

Below, we develop explicit expression for the derivative terms appearing on the right hand sides of

(E.26) and (E.27). We use the notation

M 2 M
06, (E.28)

g2 oM

&

Differentiating (E.10)-(E.12) with respect to 8, yields

PO = ATPWA 4 (A9 pA + ATPAY) 4 RO)) (E.29)
G = AQWAT 4+ (ANGAT + AQADT 4+ 7)) (E-30)
20 = QUATP 4+ QAT p + GATPU) (E-31)

where expressions for the derivatives A, R() and V) are given by (F.20)-(F.28) of Appendix F.
Differentiating (E.21), (E.22), (E.17) and (E.18) with respect to 8; yields

0= +2+002]+2v 4 @21y (E.32)
—[F(j)Z],',' = [FZ(j)];;, 1=1,2,...,n, (E'33)
where
() 2 57007
FUY = oY) — (B.BT)9q - B.BTaW (E.35)
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and the derivatives AY ),(BCBCT)(j) and QU) may be computed using the results of Appendix G.

Note that if we define
2L +2009z

then (E.32) and (E.33) are equivalent to
. 1 .
D= _(=r! (4)
Y ( 2£ +Qz'9)
ZW = z(0) 4 Z.(ij)
where

zZ 2 2 - L") e H

ZY 2 _diag(F)" + (FZ{) + FO 2).

Differentiating (E.10)—-(E.12) with respect to A yields

P=ATPA+(A PA+ATPA+R)
Q:AéAT+(fiQ'T+AQ2+V)
. [ . =T JES
Z=QATP+QA P+ QAP.

(E.36)

(E.37)
(E.38)

(E.39)
(E.40)

(E.41)
(E.42)
(E.43)

where expressions for JZ, Rand V are given by (F.29)-(F.33) of Appendix F. Differentiating (E.21),

(E.22) and (E.17) with respect to A yields

0="La, +2(Y +92)
0= [FZ.],',', t=1,2,...,7,

where
T

La, = Qz;z .
Note that (E.44) and (E.45) are equivalent to
Y= —(%[:Ac +02)
Z=2,+24
where
Zo=5(ba, ~ LR+ H
Z4 = —diag(F)™! * (FZ,).
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(E.44)
(E.45)

(E.46)

(E.47)
(E.48)

(E.49)
(E.50)
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Before presenting the desired derivative expressions we define
cro xgs . . ~ T o
Hp (BY, 20, YD, 200y = 2(PY)" v, - B9 BD.V, + BY'B.V,
=T T . .
+29 cT- 2 cIpT + (¥ - az9Q)B,) (E.S51)
H;, (@9, 29,YD, 2090) = o~ R3,Q5) + RaD.CQY) + RaCQ3)

T . .
_ BTZ0T _ pTRTz0T | 0 (20) _yl)y) (E.52)
Hy, (PD),GD, 20 = 2(~R509CT + R,D.COYCT + R, .04 CT)
_ BTz cT) (E.53)

Notice that the right hand sides of (E.51)~(E.53) are essentially identical in form to the right
hand sides of (E.7)-(E.9). The difference is that P,Q,Z,Y and Z and have been replaced by
PG QU)| Z() YD) and Z(9) and the last term (2R3 D.V;) in (E.9) has no counterpart in (E.53).

Derivatives with Respect to B x,

Differentiating (E.7)-(E.9) with respect to b. x¢(= ;) gives the following.

3HB = Sl ; ; ~ ke

e = Hy (PD, 2D yD 20Dy 4 2P EFD vy + (Y - QZQ)E

0B. k¢ B (P 2V, 200 4 AP By i, Ve £ Ex] (E.54)

-2(0Yzq + 9z0)B,

OHe. _ y: (QW, 2 y\) zG)y— opTE!Y 2T (E.55
chkl_ C. ’ ’ ’ ) ny,Xne <22 . )
OHp, _ pi (B 5G) 506 Tp  plkd)
3B = Hp (PV,QY,20) = 2BT P B0 Va. (E.56)

Derivatives with Respect to C. ¢

Differentiating (E.7)-(E.9) with respect to 8;(= c.,k¢) gives the following.

oH Lo . ) - . .
a0 = Hp (PO, 20,y 200) - 973 E030, DT - 20020 + 020W)B.  (E.57)
C,
0H mn mg ) , )
(‘)C C:l = H&.‘(Q(J), Z(J),Y(J), Z(J)) + 2R2E£1’:':)an22 + 2E$&t'£)nc(z _ Y) (E58)
C,
OH e mg =g )
D _ Hbc(P(J),Q(J),Z(J)) + 2RzE£.t';),.cQ;r2CT. (E.59)
0C ¢ ke

Derivatives with respect to d. s,
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Differentiating (E.7)-(E.9) with respect to d. x¢ gives the following.

dHp,
2He. - P, 7)Y, 200y — 2L BELY, Vv,
c, ke
Ofic, _ gy (G,29,y9,20) 4 20,559, CQu,
0D ke ’
oH 3 p
aD,,.D;, = By, (PV,QW, 20) + 2R, EXY, €GuCT + BTPuBEL,,
+ R2E$t’: )t()n, )

Derivatives with Respect to A

Differentiating (E.7)-(E.9) with respect to A gives

aHBc _ ' . A . .
o= = Hy (P, 2,Y,2)

+ 2(PXVi; - PLBD.V; — PSBDV; + P2 B.V,)

+ Z5LCT - ZL,cTDT)y

chc RSO
+2( ~RL012 + RyD.CQra + Ry D, CQr2 + RyC.Q2y
4+ BTZL - DTBTZ])
aHDc ot Y
aA _‘HDc(P‘)Q’Z)

+2(-RLQ1CT - RLQuCT

+ RyD.CQnCT + Ry D.COCT + Ry:D.CQnCT

+ R,C.CQLCT + R,C.QT,CT)
+2(—-BTPyViy — BT PpyViy
+ BTP,,BD.V, + BYP\BD.V; + B*P,,BD.V,
— BTP;,B.V; — BT P, B.Va)
- 2BTZECT - B¥Z,,CT
+2(R2D.V; + Ry D VA)

where
A B]_[A;-40 Bs-Bo
¢ b|=|ci-c Cr-cCo
[Rl Ry2] _ [ le-Rlo Rl!,f—Rn,O]
R, Ry | |RL J - Rl;0 Ray—Rap
[Vl Viz | _ [ V1,5 = Vip VlZ,j"VIZ,O]
Vi Vo] T Vi -Vise Var—Vao |
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(E.60)
(E.61)

V

(E.62)

(E.63)

(E.64)

(E.65)

(E.66)
(E.67)

(E.68)
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Appendix F: Closed-Loop Matrix Derivatives for the Input Normalized Riccati Basis
In this appendix we assume that (A, B, C., D.) is restricted to the input-Normal Riccati basis

st i vatives 8A 8R 8V 8A B8R v
and present explicit expressions for the derivatives D4, 56,7 581 A1 BA and 33 where

vec(B.)
6 = | vec(C.) (F.1)
vec(D,)
- [A-BD.C -BC,
A= [ B.C  Ac- BCDCC] ’ (F-2)
D Rll Ru]
~ [ & F.3
R [R'II‘Z R22 ’ ( )
where
Riy =Ry -CTDTR], - R;;D.C + CTDITR,D.C (F.4a)
Riy = —R12C. + CTDTR,C. (F.40)
Rzg = C;rchc, (F4C)
and i i
y Vi W2 ]
Vv=|2 5 F.5
[Vﬁ; Va (F-5)
where
Vi1 = Vi - BD.V;5 — V1, DT BT + BD .V, DT B (F.6a)
Viz = Vie BT — BD.V; B! (F.6b)
Voo = By V3 B;. (F.6c)

It is assumed that the plant matrices (A4, B,C, D), the cost weighting matrices (R, Ry, R;)

and the disturbance matrices (V;,V;2,V2) are the following functions of A.

(40 BN =[& B]ex([& 2]-[& 2D -

Ry(X) Rn('\)] [ Rip  Rizo] { Ri; Riayg] [ Ripo Ri o]
= ' : A : - : : F.
[R'lr2('\) R2()‘) .R'lr2,0 Ry J * ( R'1r2,f Ry s _ errz,o Ry ) ( 8)

Vi(A) VIZ(’\)] [Vlo Vizo | [ij V12f] [VIO Vuo]
= fyro Vol ([ M Vingl e Mo )
[VE;(A) i) | T vk, Vel (vs;,, Vay ] T IVile Vao ) (®9)
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Below, we use the notation

- a OM
M — _a__A-o
Note that
A B) _[A;-40 B;-Bo
¢ D|=|c;-Co Dy-Dy
R, Ry [ Ryy—Rio Rig-— Rn,o]
R'lrz R2 § _R’fz,j - R'lrz.o R2.! - R2.0
[ i W] iy -Vip Viay - Vl2,0}
Vn Vz J _VI'IZ\,)' - Vl'g.o Vag = Vap

8A B8R

(F.10)

(F.11)

(F.12)

(F.13)

The derivations of the expression for 20,7 96, and —g% are primarily based on the application

of the following derivative formulas. It is assumed that X is an n x m matrix.

F-2

Derivative Formulas

d

Ez_.,-XA = [A(4, )lrow—i
L AX = (A, Dear-s
dl'ij = «9 ¢ )lcol—j
4 xTy= [A(%, )]row-5
dxij = 1,0 )jrow—j
2 AXT = [AG, Dot
dxij - 37 )lcol=i
4 AXB = A(;)BG,)
. = A(;,1)B(7,:
d T Ny
E;;AX B = A(.,])B(l,.)
o
36,
[ 0 0

_[C(£$ :)]I‘OW-’C %:17 - @_t_:(e, :)]row—k
[0 —[B(Z,k)]co|_[ }

|0 24~ — [BeD(:, K)ol

October 1993

|

(F.14)
(F.15)
(F.16)
(F.17)
(F.18)

(F.19)

(F.20)

(F.21)
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3 -B(,k)C(¢,:) O
o4 = (F.22)
Od. ke 0 0
where £—:‘: and 3%‘: are given respectively by (D.2.36) and (D.2.37) of Appendix D.
)
08;
OR
=0 F.23
Obe, ke (F-23)
61:’, F 0 [_R12(:ak) + CTDERZ(:a k)]Col—l
= (F.24)
aCc.kl _SYM [C;IR2(:1k)]C°|—l + [RZCc(k’:)]row—[
- r cT(.,0)|R;D.C(k,)-RE (k,)) T, '
OR = +[CTD;rRz(:,k)-Ru(:,k;]C(l,:) C(ORCe(k, ) (F.25)
Ddene SYM 0 -
ov
09
ov 0 [Viz(:,€) = BDVa(:,8)lcot -k
5 = (F.26)
crkt SYM [%B;r(e’:)]row—k + IBCVZ(:a e)]col—k
v
acc,kl - O (F.27)
- B(:k)[VaDY BT (¢,:)-vI(e,)) L Tia
azv [ﬂBD‘Vz(:.n—vxa(:,mBT(k.:) THeRRAE ')} (F.28)
ok SYM 0
: 5 0A
%
:_[A-BD.C-BD.C -BC.
4= [ B.C —BCDC'C] (F.29)
= a 3}-?,
a
=% By (F.30)
Ry, Ry
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where
Ru = By — CTDTRY, - C*DTRY, - Ry;D.C — Ry, D.C
+CT*DYR,D.C + C*DTR,D.C + CTDTR,D.C
Riz = —R12Ce + CTDTR;C. + CTDT RyC.
Ry = CTRyC..
A 617
VEa
“, _ V%l ‘?12
Vis Va2
where

Vi = Vi — BDcVE = BDVE — Vi DTBT - V4, DT BT
+BD.V,D BT + BD.V,D.BY + BD .V, D.BT
Vi = —Viy BT — BDTV, BT — BD.V, BT

Vo = B.V,BT.

F-4 October 1993

(F.31a)
(F.31d)
(F.31¢)

(F.32)

(F.33a)
(F.33b)
(F.33¢)
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Appendix G: Derivation of 5%‘4: and 5‘:—Aﬁ for the Input-Normal Riccati Basis

G.1 Problem Statement

In this Appendix we assume that the controller triple (A., B.,C.) is in the input normalized

Riccati basis described in Section 3, such that

Ac = %[C;I‘Cc - BchT] * Iﬂ: + [(C;TCC) * (N“c + flT) _ (Nn, + !_2) * (BCB;I') * {_2'1'] «H (G.l.l)

where
Q = diag(CTC.) diag(B.BT)™! (G.1.2)
and
H=(Nn -1.)/02T-02+1,). (G.1.3)
We derive explicit expressions for the derivatives 82::( and a?:f:, .
Below, we use the notation
Fp, & B.BT (G.1.4)
Fc.2ClC. (G.1.5)
MEN, -1, (G.1.6)
un, 2[1,1,...,1]T, u, €eR™ (G.1.7)
and recognize that
Z = diag(Z)u, , Ze€IR™*"™ (G.1.8)
N, = u,,cu',I:c (G.1.9a)
5,(,':) = egt)u;l;c (G.1.9b)
2=G|F (G.1.10)
H=M/(OT-02+1,) (G.1.11)
1 - = =
Ac=5I+[Fo, - Fp,] +[Fc. * (Na, + Q7Y = (N, + 2)+ Fp + Q7]+ H (G.1.12)
[Fo, * (Nn, + 2T) = (Na, + 2)+ Fg, + 2T = Ac+ M/H. (G.1.13)
The derivations of the expressions for %: and 562—:‘:—‘ use the following identities.
E&D = e’ (G.1.14)
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Wz = Z(k,), ZeR™"

Zel) = Z(:,0), ZeR™*"

L (N/D()) = [N/ D)/ D) »
2 (N@)p) = 32 /D

Z=abT = Z=(a*b)u,, abelR"

MsM=M

G-2 October 1993

(G.1.15)
(G.1.16)
(G.1.17)

(G.1.18)

(G.1.19)

(G.1.20)
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aAL 8A,
b, and BCent

G.2 Expression for

Differentiating (G.1.12) with respect to b. x¢ gives respectively

dAc _ 1, , OF
Obce 27" Bbexe
aaT  an . . 80T
+[Fc, + m/— o re 8bc - «Fpg, + 2T — (N, +02)+ (31) + 0T 4 Fp_ » Boore )+ H
+ (A M/H)+ 22 (G2.1)
Ob. ke
oAc _ 1, OFs,
Occrr 27" 3Cc ke
onT on - - anT
T _ T _
+[6 *(N"c + )+ Fe, * ccre  Boore *» Fg 02 (Na, + 2)x Fp, * acc,kl]*H
OH
+(AC*M/H)* . (G2.2)
Oce ke

Below, we develop explicit expressions for the derivatives on the right hand sides of (G.2.1) and

(G.2.2).

c

0Fp and
Obc ke Occ ke

Differentiating (G.1.4) and (G.1.5) respectively with respect to b k¢ and cg ¢ gives

gfac = E*9 BT + B, E(kxnc (G2.3)

c, ke
T

OFe. _ pna” 1 cTERD, (624
Ce,kt
which using (G.1.14) are equivalent to

0Fp. _ (k0T gt ¢

. BT + B.elVe ()T G2.5

Bbc,u €n. €ny T Deey, En, ( )

OFc, eld (k)TC +CTee (l) (G.2.6)

From (G.2.5) and (G.2.6) with (G.15) and (G.16) we obtain

0Fp,

= eV B, 0)T + o, 0)e®? (G.2.7)
Obe, ke
e, _ ek, + cc(k,:)TeSf’T (G-28)
Oce ke ¢ ‘
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an and a0
Ob. ke Oc. ke

Differentiating (C.1.10) with respect to bc ks and cc k¢ using respectively (C.1.17) and (C.1.18)

gives
oQ = s = 0Fp
= —(Fe./FB.[Fi < G.2.9
abc,k[ ( Ce/ Bc/ Bc)* abc,k[ ( )
o _ OFc, ,-
Beore ~ Dewre /FB,. (G.2.10)
Also, it follows form (G.2.7) and (G.2.8) with (G.1.9b) that
g:;i; = 2bc,ue(n‘?u’£: (G.2.11)
F
g‘:ci‘[ = 2¢; peeldul (G.2.12)
or, equivalently,
oF
3bj; = 2b ke8P (G.2.13)
oF
BCCC‘; = 2cc 1LY (G.2.14)
Substituting (G.2.13) into (G.2.9) gives
N -
3, =~ 2/ Fs) (2be keEL9) (G.2.15)
or, equivalently,
a.(} _ 2bc‘);[(-|Jk (k)
Dot~ o & (G.2.16)
Substituting (G.2.14) into (G.2.10) gives
N -
o = 2ce ke [ Fp, (G.2.17)
or, equivalently,
00 _ ekt (G2.18)

Occke  fB. e
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Ob ke and Oce ke

Let z = b ¢ or c. xe. Differentiating (G.1.11) by z yields

OH B.OT B.Q

Harris Corporation

— = - [M/(2T -0+ 1,)/(0T n ) 2.
T M7 - 2+ 1) : -2 (6:2.19)
It follows from (G.1.11) and (G.1.20) that
OH an Tt
S =HyHe (5 - (G.2.20)
Hence, from (G.2.20) with (G.2.16) and (G.2.18) it follows that
0H 2be kew T
o =" fB"‘kkkH s Ha+(EP -7, (G.2.21)
aH 2CC kt & _ (()T
e, = T H 4 (€ - €0, (G.2.22)
Substituting (G.2.7), (G.2.16) and (G.2.21) into (G.2.1) gives
0A 1 T
e 1 &g (- T . 0)elk)
Db e 2],,c x [ ) B(:,€)" + Bc(:,)ey,
+ [Fe, * (M ’(1k)T)+(%£“"_"g’(lk)) « Fp s 07
fBokk ¢ fBokrs
— (W, + 2) 3 (DB, 07 + BL, O ) 4 27 (G.223)
_ be
— (Nu. + Q)+ Fp_ + (_if-’ff‘—:‘gg';fr)]  H
—2b¢ kewk
+(en MUY+ [ZZ2 2 0 (60 - £007)
or, equivalently,
0A: (k. k)
Obepe ~bekeEnan.
be
+ 2 “wkc‘:(") «[Fp, « QT « H— A+ M+ H|
.;:Bc.k (G.2.24)
2., -
+f.+“""s(k>T s[Fo, * H+ (Nn, + )+ Fo s H+ Ac+ M « H]
(Mo, + 2) ¢ H s 2% DB, 00T + B, )M ]
GASD-HADOC October 1993 G-5
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Substituting (G.2.8), (G.2.18) and (G.2.22) into (G.2.2) gives

d0A 1 T
4. 1 OC.(k.2) + Culk,:)Te®
s = ghne +[B2C(k ) + Culk, )Tl
+ [(e(')c (,:) + Cu(, -)Te“)T + (Na, + 27)
2Cc kt (T Ce ke T
et (5, £ - (f £ N+ H (G.2.25)
= (Na, + )+ Fp, + (25ekt s“’T)] oH
fB. e

(Acs M/H)+( f““H o H o+ (£ - £07))

€y

or, equivalently,

4 ekt 2Cckt (:)[ Fg *_QT*H-{-A * M x H|
o (G.2.26)

+ _icc'“z,‘.i)T[Fc‘ *H—(No,+ Q)% Fp, v H+ Acx M + H]
B, ,tt

+ (N, + 27)% H + [e2Ce(k,:) + Culk, =)Te‘,f3T].
Now, define

Hyow = [(Fp, # 2%) - (Ac+ M)+ H (G.2.27)
Heot 2 [(No. + )+ Fp,) + (Ac+ M) - Fe | + H (G.2.28)
Hp, £ (No, + )« 2T« H (G.2.29)
Hc, £ (Na, + 2T)+ H. (G.2.30)

Then, it follows from (G.2.24) and (G.2.26) that

A, b,
OAe — poseB0, 4 ok 1OV (k) + Heai(o k)e®T)
Obe ke ¢ ch,kk ¢
+ Hp, *[B(,0)e®” + e®B(:, 0)T] (G.2.31)
04 o coneELY, - RO R () + Hea( 00T
dcc ke <X"e  fp_ e ne
+ He, «[€0C(k,:) + Celk, )T (G.2.32)

G-6 October 1993 GASD-HADOC
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Note that 82—“: only has nonzero entries in the k*! row and column, while 82—": only has nonzero
<, c,

entries in the £" row and column.

GASD-HADOC October 1993 G-7
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Abstract

The minimal dimension of a linear-quadratic-gaussian (LQG) compensator is almost always
equal to the dimension of the design plant. This deficiency can lead to implementation problems
when considering control design for high-order systems such as flexible structures and has led to
the development of methodologies for the design of optimal (or near optimal) controllers whose
dimension is less than that of the design plant. This paper presents a new (gradient-based) ho-
motopy algorithm for the design of reduced-order, H2 optimal controllers. An important result is
the development of an efficient methodology for computation of the of the cost functional Hessian
which is required by the algorithm. Tle optimal controller is represented by a parameter vector
and various parameterizations of the optimal controller are considered to reduce the algorithm
dimensionality. The algorithm has been implemented in MATLAB and the results are illustrated
using a benchmark, non-collocated flexible structure control problem. It is seen that the choice of a
particular controller parameterization often introduces numerical ill-conditioning in the algorithm

implementation.

*Supported in part by SANDIA National Laboratories under contract 54-7609 and NASA under
contract NAS8-38575.






1. Introduction and Nomenclature

The linear-quadratic-gaussian (LQG) compensator (Athans 1971, Kwakernaak and Sivan 1972)
has been developed to facilitate the design of control laws for multi-input multi-output (MIMO)
systems. An LQG compensator minimizes a quadratic performance index and (under mild condi-
tions) is guaranteed to yield an internally stable closed-loop system. Unfortunately, however, the
minimal dimension of an LQG compensator is almost always equal to the dimension of the plant
and can thus often violate practical implementation constraints on controller order. This deficiency
is especially highlighted when considering control-design for high-order systems such as flexible
space structures. Hence, a very relevant area of research is the development of methodologies that
will enable the design of optimal controllers whose dimension is less than that of the design plant

(i.e., reduced-order controllers).

Two main approaches have been developed to tackle the reduced-order design problem. The
first approach attempts to develop approximations to the optimal reduced-order controller by reduc-
ing the dimension of an LQG controller (Yousuff and Skelton 1984a, Yousuff and Skelton 1984b,
Anderson and Liu 1989, De Villemagne and Skelton 1988, Liu, Anderson and Ly 1990). These
methods are attractive because they require relatively little computation and should be used if
possible. Unfortunately, they tend to yield controllers that either destabilize the system or have
poor performance as the requested controller dimension is decreased and /or the requested authority
level is increased. Hence, if used in isolation, these methods do not yield a reliable methodology

for reduced-order design.

The second approach attempts to directly synthesize an optimal, reduced-order controller by
a numerical optimization scheme (Levine, Johnson and Athans 1971, Martin and Bryson 1980,
Mukhopadhyay, Newsom and Abel 1982, Ly, Brysib and Cannon 1985, Mukhopadhyay 1987, Kuhn
and Schmidt 1987, Richter 1987, Makila and Toivonen 1987, Kramer and Calise 1988, Mukhopad-
hyay 1989, Richter and Collins 1989, Mercadal 1991). Almost all of these schemes are gradient-based
parameter optimization approaches; that is, they represent the controller by some parameter vector

and attempt to find a vector for which the gradient of the cost functional is zero.

With the exception of Mercadal 1991, all of the previous, gradient-based optimization tech-
niques are descent methods. That is, at each iteration the cost function is decreased. An alternative
(Mercadal 1991) is to develop a gradient-hased homotopy algorithm that allows an initial controller
to be deformed gradually into a desired optimal controller by following a homotopy path. This type
of algorithm is distinct from the previous algorithms in that each iteration does not necessarily de-

crease the cost function. In fact, the cost may actually increase as the homotopy path is traversed.



However, it is quite possible that the shortest path from the initial controller to the desired optimal

controller is not a descent path.

Efficient path following requires accurate computation of the Hessian of the cost functional.
Hence, this paper develops an efficient method for computing the Hessian. An alternative method
for computing the Hessian is presented in an earlier publication (Sun 1991). However, to our
knowledge, this previous method, based on the results of Sun 1990, does not exploit certain low

rank matrices as does the method presented here.

A homotopy algorithm for optimal reduced-order design is described in Richter 1987 and Richter
and Collins 1989. This algorithm is based on solving a set of “optimal projection” equations (Hyland
and Bernstein 1984, Haddad 1987) that are a characterization of the necessary conditions for
optimal reduced-order control. Unfortunately, the algorithm has sublinear convergence properties
and the convergence slows at higher control authority levels and may fail. Homotopy algorithms
for optimal reduced-order modeling, based on optimal projection equations, are discussed in Zigic
et al. 1992 and Zigic et al. 1993. These algorithms are based on more efficient path following

techniques but are relatively slow due to the large dimensionality of the algorithm formulation.

This paper describes a homotopy algorithm for the design of reduced-order, H, optimal con-
trollers which is not based on the optimal projection equations. The algorithm relies on the first
and second derivatives (i.e., the gradient and Hessian) of the cost functional with respect to a pa-
rameter vector describing the controller and an efficient methodology for computing the Hessian is
developed. To reduce the dimensionality of the algorithm, various parameterizations of the optimal
controller are considered. The algorithm has the potential for quadratic convergence rates along
the homotopy curve. The results have been implemented in MATLAB and are illustrated using
a benchmark, non-collocated flexible structure control problem. It is seen that the choice of a
particular controller parameterization often introduces numerical ill-conditioning in the algorithm
implementation. The algorithm presented here is similar to that described in Mercadal 1991. How-
ever, whereas Mercadal 1991 focuses on theoretical issues related to homotopies and only describes
a rudimentary homotopy algorithm, the present paper focusses on numerical algorithmic issues and

describes a much more refined and efficient homotopy algorithm.

The paper is organized as follows. Section 2 describes the H, optimal reduced order dynamic
compensation problem. Section 3 gives a brief overview of homotopy methods. Section 4 then
develops a homotopy algorithm for the design of reduced-order Hy optimal controllers. Section 5
applies the algorithm to a benchmark structural control problem and compares various algorithm

options. Finally, Section 6 presents the conclusions.



Nomenclature
Y>2Z

Y>Z

2ijy Zi,j or Z(; j)
I

trZ

vec(-)

&
EGD)
Z(k,:)

Z(:,k)

Y — Z is nonnegative definite
Y — Z is positive definite
(1,7) element of matrix Z

r X r identity matrix

trace of square matrix Z

the invertible linear operator defined such that

vec(s) £ [s] s3 -+ sT]T, § € IRP*?
where s; € IR? denotes the j*P column of §.

the m-dimensional column vector whose #*! element
equals one and whose additional elements are zeros.

the m x n matrix whose (k, £) element equals one
and whose additional elements are zeros.

k" row of the matrix Z
(MATLAB notation)

kth column of the matrix Z
(MATLAB notation)

2. H,; Optimal Reduced-Order Dynamic Compensation

Consider the system

#(t) = Az(t) + Bu(t) + wy(t)

y(t) = Cz(t) + Du(t) + wy(t)

(2.1a)

(2.1b)

where z € IR"*,u € IR"*,y € IR™,w; € IR™ is white disturbance noise with intensity V; >

0,w; € IR" is white observation noise with intensity ¥, > 0, and w, and w, have cross correlation

Vi2 € R™ X", We desire to design a fixed-order dynamic compensator,

(1) = Acze(t) + Bey(t)

u(t) = =Ceze(t)

which miniinizes the steady-state performance criterion

J(A., B.,C.) £ Jim E[zT(t)Ryz(t) + 22T (1) Ry2u(t) + vT (1) Ryu(1))

3

(2.24)

(2.2b)

(2.3)



where z. € R*,n. < n,R; = R'lr 20and R; = R'zr,_>_ 0. We will call this problem the optimal

reduced-order dynamic compensation problem.

The closed-loop system corresponding to (2.1) and (2.2) can be expressed as

i(t) = A#(t) + 9(1) (2.4)
where
5(1) 2 [;c((‘t))], B(t) 2 [ B‘:’;(:()t)] (2.5,6,7)
. A -BC.
4= [BCC A, - BCDCC] ' (2.8)

In addition, the cost (2.3) can be expressed as

J(Ae, Be,Co) = Jim E(T(1)R(1) (29)
where
p 2 R, Ry C.
R= [CZR'{z C;ngCc]‘ (2.10)

To guarantee that the cost J is finite and independent of initial conditions we restrict our
attention to the set of stabilizing compensators, S. £ {(A., B.,C.): A is asymptotically stable}.
Assume (A, B.,C.) € S. and define § € IR™**™* and P € IR™*™ to be the closed-loop steady-

state covariance and its dual, i.e.,

0=AQ+QAT +V (2.11)
0=ATP+PA+R (2.12)
where
5a | W Vi2 BY
Ve |50 st (2.13)
Then, the cost can be expressed as
J(Ae,B.,C.)= tr QR = tr PV. (2.14)
Also, é and P can be expressed in the partitioned forms
A Ql) Q-IQ] A ny XN A Xn
=& Yl R™ X" IR ™ Xne 2.15
Q [Q'lr'.' O1a Qn € Q2 € ( )
D P P 2 D ng, xn D neXn
P= [P}é P:;]’ PR s X =, PpbelR eXNe (216)

4



Notice that Qll is the covariance of the plant states, Qn is the covariance of the compensator

states and @, is the cross-covariance of the plant and controller states.

Expressions for the partial derivatives 2L, 22 and 3851, are given below. First, we define Z

DA, 8B, *
satisfying
Z=0QP (2.17)
and assign Z the partitioned form
z=3 2], mmemen, Zmemerm, (218)
The cost derivatives are then given by
aJ 5 '
v 2z}, (2.19)
aJ pT 5 5T T _ 5T ~TpT
3B. =2(PaVis + PuB V2 + Z2,,C" - Z2;,C. D7) (2.20)
oJ x ~ - -
ac. = 2(-R1;Q12 + R2CcQxr — BTZ3, - DTBTZ]) (2.21)

Definition 2.1. A compensator (A, B.,C.) is an ezrtremal of the optimal reduced-order

dynamic compensation problem if it satisfies the stationary conditions

aJ aJ aJ
8Ac =0, -0'3; = 0, a—CC =0. (2.22)

The homotopy algorithm of Section 4 is based on finding extremals of the optimal reduced-order

dynamic compensation problem.

3. Homotopy Methods for the Solution of Nonlinear Algebraic Equations

A “homotopy” is a continuous deformation of one function into another. Over the past several
years, homotopy or continnation methods (whose mathematical basis is algebraic topology and
differential topology (Lloyd 1978)) have received significant attention in the mathematics litera-
ture and have been applied successfully to several important problems (Avila 1874, Wacker 1978,
Alexander and Yorke 1978, Garcia and Zangwill 1981, Eaves, Gould, Peoitgen, and Todd 1983,
Watson, 198G). Recently, the engineering literature has also begun to recognize the utility of these
methods for engincering applications (sec e.g. Richter and DeCarlo 1983, Richter and DeCarlo
1984, Turner and Chun 1984, Dunyak, Junkins, and Watson 1984, Lefebvre, Richter and DeCarlo
1985, Sebok, Richter, and Decarlo 1986, Horta, Juang and Junkins 1986, Kabamba, Longman and

5



Jian-Guo 1987, Shin, Raftka, Watson, and Plautt 1988, Rakowska, Haftka, and Watson 1991)).
The purpose of this section is to provide a very brief description of homotopy methods for finding
the solutions of nonlinear algebraic equations. The reader is referred to (Watson 1986, Richter and

DeCarlo 1983, Watson 1987, Watson 1986) for additional details.

The basic problem is as follows. Given sets © and ® contained in IR" and a mapping F : @ — &,

find solutions to
F(8)=0. (3.1)

Homotopy methods embed the problem (3.1) in a larger problem. In particular let H : © x[0,1] —
IR"™ be such that:

1) H(6,1) = F(6). (3.2)

2) There exists at least one known 6, € IR" which is a solution to H(-,0) = 0, i.e.,

H(6o,0) = 0. (3.3)

3) There exists a continuous curve (6(A),A) in IR x {0,1] such that
H(8()),A) = 0 for A€ [0,1] (3.4)

with
(6(0),0) = (60,0). (3.5)

4) The space O x [0,1] has a differential structure so that the curve (8(1),)) is differentiable.

A homotopy algorithm then constructs a procedure to compute the actual curve o such that the

initial solution 8(0) is transformed to a desired solution #(1) satisfying

0= H(8(1),1) = F(8(1)). (3.6)

Differentiating H(8()),A) = 0 with respect to A yields Davidenko’s differential equation

OH dé OH
26 Ir + Y 0. (3.7)

Together with #(0) = 6y, (3.7) defines an initial value problem which by numerical integration from
0 to 1 yields the desired solution #(1). Some numerical integration schemes are described in Watson

1986 and Watson 1987).



4. A Homotopy Algorithm for H, Optimal Reduced-Order Dynamic

Compensation

This section presents a new homotopy algorithm that can be used to design H; optimal reduced-

order dynamic compensators. Particular attention is given to construction of the Jacobian of the

homotopy map.
4.1 The Homotopy Map

If we define

L)
e

vec(A.)

vec(B,.) | , (4.1)
vec(C.)

then the cost functional of Section 2 can be expressed as J(6). The homotopy defined in this section

is based on finding # satisfying

0= 1(6)2 52(0) (4.2)

It is useful to recognize that

8J
vec;,—A—‘-
_3_.;_ = [vecﬂ—] . (4.3)

Expressions for the partial derivatives %, gaﬂi and gac{_ are given by (2.19)-(2 21).

Definition of the homotopy map H(#,))

To define the homotopy map we assume that the plant matrices (A, B,C, D), the cost weighting
matrices (R;, Ra, R12) and the disturbance matrices (V;,V:2,V;,) are functions of the homotopy

parameter A € [0,1]. In particular, it is assumed that

A(Q) B(M)] _ Ao Bo Ay Bs| [Ao Bo
&3 20l =1& ml+(& 2]-1& 2D (4.4)
[ Rl(’\) Rl?(A)] Ln(A LT A
= 4.5
[RL()  Ry(n) | = ERAER (43)
where
Lr(A)=Lro+ MLRrys- LRro) (4.6)
and Lrp and Lp s satisfy
R Ry»
L LT = 1,0 ]-,0} 4.
ROLRO [R’ll‘zlo R2,0 ( 7)
R R
L sLF =[ /! ”"}, 4.8
RiLRy T Ry (4.8)



i(A) Viz(A) ] L T
[Vl'rz‘(A) VIT(,\)J—LV(’\)LV(’\) (4'9)

where
Lv(A) = Lvo + MLv,s - Lvo) (4.10)
and Lyg and Ly, satisfy
v 1% '
vosva [V{{o Vao (4.11)
Vi | %
Lv LY, = % ”-’]. 4.12
virLlv,y [V{‘;,, Va.s (4.12)

Note that (4.4)-(4.12) imply that A(0) = Ao and A(1) = Ay, B(0) = By and B(1) = By, etc ...
and it is understood that Ay, By, ... were referred to previously simply as 4, B,.... The change in

notation is simply for convenience.

Let P()), Q()) and Z()) satisfy

0 = A(A)TP(A) + P(A)A(N) + R(N) (4.13)
0= AA)QA) + QAT + V(1) (4.14)
Z(x) = Q(\)P()) (4.15)

with partitioned forms

s [Pu(d) PaN] 400 [Q@u(d) QM) 5, - [Zu(d) Zna(N)
=20 2] ow= [ SN 2= [0 ] e

where the (1,1) and (2,2) blocks of each matrix are respectively n; X n; and n. x n.. The homotopy
map H(8,)) is defined as the gradient of the cost of the system defined by the homotopy parameter

A. In particular,

vec(H 4, (6,1))
H(8,)) & | vec(Hp.(8,))) (4.17)
where
Ha (8,)) = 2Z], (4.18)
Hp,(8,)) = 2(PViz + PnB. Vs + 25T - ZT,CTDT) (4.19)
He (8,)) = 2(~RQuz + R2.C.Qr2 - BTZ], - DTBTZ},) (4.20)

Note that in (4.18)-(4.20) and below the argument A is omitted for notational convenience.

8



4.2 The Jacobian of the Homotopy Map

We now consider that computation of 7 H(8,A)T, the Jacobian of H(#,)). Note that

VH(8,\)T = [Hs H)) (4.21)
where
a OH a 0H
He = —057, H) .ﬁ (4.22)

Since H(8, A) is the gradient for the system defined by A, Hy is the corresponding Hessian. Recalling
that 8 is defined by (4.1), such that for some integers k and ¢, 6, is given by

6; = acke, 05 = boge, 05 = ccpey Or 05 = dege. (4.23)

It follows from (4.13) that Hy is of the form

...vec(aai“HA‘)...vec(%HAc)...vec(ach“HAc)
Hy = ...vec(ﬁh’&)...vec(r"“ﬂg‘)...vec(acf“HBC) } (4.24)
.. vee( Hc‘)...vec(g?;Hc‘)...vec(acf“Hcc)

i)
8“}.&(

and H) can be expressed as

vec(Z Ha,) (4.25)
vec(& He,)

Below, we develop explicit expression for the derivative terms appearing on the right hand sides of

vec(-é%HA‘)
H, =

(4.20) and (4.21). We use the notation

M) 2 ‘;’?_;‘f (4.26)
M2 ‘yf (4.27)
Differentiating (4.13)-(4.15) with respect to #; yields
0= AT 4 P A+ (ADT P 4 PAD 4 RO)) (4.28)
0= AQY + QW AT 4 (A9Q + 0ADT 4 7)) (4.29)
20) = 0P 4+ PV (4.30)

where expressions for the derivatives A1), RU) and V{9 are given by (A.20)-(A.28) of Appendix
A. Similarly, differentiating (4.13)-(4.15) with respect to A yields

0=ATP+PA+ (A P+PA+R) (4.31)
0=AG + QAT + (4 Q+Q/i +V) (4.32)
Z=QP+0QP (4.33)



where expressions for ;i, Rand V are given by (A.29)-(A.33) of Appendix A.

Before presenting the desired derivative expressions we define

. ey T
B, (29) 2 22§

—psy =g =T -l ey T e T
Hy (P9, Z90) 2 B3 Vig + PGBV, + 28 €T - 2§ cTDT)
ey =y s -y - T T
HL (G, 2) 2 2(-RT,O4) + R,C.Q%) - BTZ2)" - DTBT2Y)")

(4.34)
(4.35)
(4.36)

Notice that the right hand sides of (4.34)~(4.36) are identical in form to the right hand sides
of (4.18)-(4.20). The only difference is that P,Q, and Z have been replaced by P(), Q{9 and Z(9

Derivatives with respect to a. ¢

Differentiating (4.18)—(4.20) with respect to a. xe(= 8;) gives

A _ g (Z
aac,kl A‘( )
8Hp Sy 0
=2 = g\ (P Z4)
aac,kl B‘( )
8Hc ) 505
= = L (O, ZU)).
0., - Hel@ )

Derivatives with respect to b i¢

Differentiating (4.18)—(4.20) with respect to b, x¢(= 6,) gives

—A _ g (ZV)

abc,kl A‘(Z )

OHp. _ Hy (P9, 200y 4 2P, EXD vy
abc.kl ¢ ¢ v
Ole. _ 1, (g,29) - 2DTEY, 23,
Ob ke ‘ yXTe

Derivatives with Respect to ¢, x¢

Differentiating (4.18)-(4.20) with respect to c.x¢(= 8;) gives the following.

OH 4, = H' (743

acc.kl B HAt(Z )

OHp, _ v 50) 50) 5T gtk  pT

dcee Hp (P, Z'7) = 220, ', D

aﬂc‘ =2(5) 53 )

s = HE,(QV,29) + 2R B, Qo
¢kt

10

(4.37)
(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)



Derivatives with respect to A

Differentiating (4.18)~(4.20) with respect to A gives

3 = Ha(2) (4.46)
O0H Y - - . R - .
i = Hp (P,2) + AP} Va2 + PuBcVs + Z5CT - Z5,CTDT) (4.47)
8H : oz s s s - s = . - '
225 = HE(0,2) + 2~ REQu + RaCelin + BT 2] - DTBIZE) (4.48)
where from (4.4)-(4.12)
A B]_[A;-4 B;-B
[c D] = [c,-c0 c,-co] (449)
R'} g LrLr™ + LRL.RT (4.50)
Ry, R,
where
Lr=Lps—Lpo (4.51)
Vi W T - T
[‘/1-12- Vz ] =LyLly 4+ LvLy (4.52)
where
Ly = Lyy - Lvy. (4.53)

Hy can now be computed using (4.24) and (4.37)-(4.45).

Note that the calculation of the j** column of Hy requires the computation of the Lyapunov
equations described by (4.28) and (4.29). Significant computational savings can be made by solving
these Lyapunov equations in a basis in which the closed-loop state matrix A is nearly diagonal (i.e.,
a modal form) or nearly block triangular (i.e., a Schur form). This requires transforming the
corresponding forcing terms into this basis which can be costly if the dimension of the closed-loop
system, n.(= n; + n.) is large. In fact, if the forcing terins are dense, this transformation requires
2n2, operations. Fortunately, it is seen by (A.20)-(A.28) of Appendix A that these forcing terms
are low rank. Hence, these transformations do not have to be expensive and often require only
about 2n?, operations. Computation of the expressions (4.37)-(4.45) requires the solutions of the
Lyapunov equations in their original basis. However, it is not efficient to numerically perform this
transformation before substituting into (4.37)~(4.45). Instead, symbolic substitution and judicious
choice of the order of matrix multiplications can result in significant computational savings. The

details of efficient computation of Hy are presented in Appendix B.
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H, is computed using (4.25) and (4.46)-(4.48). This requires computation of the Lyapunov
equations (4.31) and (4.32). The forcing terms for these Lyapunov equations are not sparse so
that computing H) in a particular basis requires 2n3, operations to transform the forcing terms.
However, the rest of the optimization associated with the computation of Hy does apply to the

computation of H,.

4.3 Reduction of the Dimension of the Controller Parameter Vector (8)

The homotopy function H(#, X), described earlier, was defined to solve the H; optimal reduced-
order dynamic compensation problem. The vector § was defined such that it contained each of the
elements of the controller matrices, A., B, and C.. However, for computational efficiency it is
desired that # be as small as possible. Hence, we desire to represent the controller matrix with the
fewest parameters possible (i.e., we desire @ to have the smallest dimension possible). The minimal
number of parameters p,;, with which a compensator can be represented is given by (Martin and
Bryson 1980, Denery 1971)

Pmin = nc(ny + ny) (4.54)

One canonical form which allows representation of a controller with a minimal number of
parameters is the modal form described in (Martin and Bryson 1980). This form will be called
here the Second-Order Polynomial (SP) form. For this parameterization a triple (A, B.,C.) has
the following structure.

A, = block- diag{Ac1,Ac2.--,Acr} (4.55)

where A.; € R*** for i € {1,2,...,7} and each A.; (with the exception of A., if the row

dimension of A, is odd) has the form

0 1
Aci= ["(1) "(2)] (4.56)

c.a c,

to allow for either a complex conjugate set of poles or two real poles. B, is completely full and

Cc = [Cc,l ’ Cc,?a ey Cc,r] (460)
where C. ; has the form
1
X *
Cer=|. .. (4.57)
*



The controller canonical form described in Kailath 1980 also allows representation of a controller
with a2 minimal number of parameters. For single-input, single-output (SISO) systems in controller

canonical form the A, matrix is a companion matrix. In particular, A, has the form

o100 ---0
0 010 0
A, =10 0 0 1 of. (4.58)
* * % * *
In. addition,
0
0
B.=|: (4.59)
0
1

and C. is completely full. A dual form of the controller canonical form is the observable canonical

form (Kailath 1980).

It is also possible to represent the controller in a basis where the number of free parameters p
satisfies

Pmin < P < Pmax = ne(ne + 1y + 1) (4.60)

One such basis is the tridiagonal basis (Geist 1091, Parlett 1992) in which the controller state

matrix is constrained to have nonzero elements only on the diagonal, the super-diagonal and the

sub-diagonal. That is,

]
»*
»

Ac (4.61)

* *

B, and C. are completely full. For this form the number of free parameters is given by

P= Pmin t+ (3nc - 2)

A common feature of each of the above bases is that they are described by simply constraining
certain elements of the controller (or plant) matrices to constant values (e.g., 1 or 0) while allowing
the remaining parameters to have arbitrary values (A, B.,C.). Hence, the corresponding parameter

vector (f,), gradient vector (Js,) and Hessian matrix (Hg ) are given by

#, =6 (4.62)
Jop=TJs (4.63)
Hgp=THT (4.64)
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Jo.p =TJg (4.63)
Hgp = THIT (4.64)

where T is an elemental matrix (i.e., each row has only one nonzero element and this element has
unity value). It should be noted here that Hy, can be computed more efficiently than shown in
(4.64). Since it is not necessary to construct the large Hessian Hy to compute the smaller Hessian

Ho,p.

4.4 Overview of the Homotopy Algorithm

This section describes the general logic and features of the homotopy algorithm for H; optimal
reduced-order control. It is assumed that the designer has supplied a set of system matrices,
Sy=(A;s,B;,Cy,Dy,Ry,5, R2 5, R12,5, V1,1, V2,7, V12,5) describing the optimization problem whose
solution is desired. In addition, it is assumed that the designer has chosen an initial set of related
system matrices So = (Ao, Bo, Co, Do, R1 0, R20,R12,0,V1,0,V2.0,V12,0) that has an easily obtained

optimal controller (A, o, B¢o,Cc0) of order n..

It is always possible to choose the initial system Sp such that (Ag, By, Co, Do) in nonminimial
with minimal dimension n.. In this case, it is easy to show that the corresponding LQG compensator
has minimal dimension n, < n. and will usually have minimal dimension n, = n.. In the latter
case, (Ac0,Bc0,Cc0,Dco) is chosen as a minimal realization of the LQG compensator. However,
we have seen experimentally that the corresponding homotopy can lead to failure of the homotopy
algorithm. Similar observations have been made by Mercadal (Mercadal 1991). In particular,

Mercadal has shown that allowing the plant parameters to vary along the homotopy path can lead

to the development of destabilizing controllers or path bifurcations.

That the above type of homotopy would cause problems is somewhat intuitive since for a given
A, say A1 € [0,1], a controller (A.(A). Bo(A1).Ce(A1)) that stabilizes the plant (A(A), B(A1),
C(M1), D(A1)) may not stabilize the plant (A(X;), B(X2),C(A2), D(A2)) for A2 # A;. Hence, below
we present ways of constructing the initial system Sp that does not require the plant paramaters
(A,B,C,D) to vary along the homotopy path. In this case, a controller that stabilizes the plant at
A1 will also stabilize the plant at A; > A;. This argument in itself does not ensure that at every
step along the homotopy algorithm the controller design remains stabilizing. This is a subject that
requires further research. It should he mentioned that another advantage of a homotopy that varies
only the performance weights ( Ry, Rz, Ry2,V;,V,,V12) is that the optimal controller at each point

is optimal with respect to the real nominal plant (Ay, B;,Cy, Dy).

14



Now, we present three options for constructing Sy and hence defining the homotopy.

Option 1. One alternative for constructing Sp is to choose Ag to be stable (e.g., if Ay is stable,
let Ag = Ay orif Ay is unstable, let Ag = A; — o] where o is sufficiently large to ensure stability of
Ap), and let either R; o or V) o be zero with all other parameters equal to their final values. In this
case (A0, Bc0,Ccp) is chosen such that it’s input-output map is zero, i.e., Cco(sIn, — Aco) 'B.p

=0.

Option 2. Another alternative is to choose Ap to be stable and as elaborated in (Collins,
Haddad, and Ying 1993) and choose either (R30,V2,0) or (V30,R20) as given below. (Again, all

other initial parameters are equal to their final values.)

(1) In a basis in which

— (AO)II 0 neXne
Ao = (Ao)n (Ao)zz]’ (4o € R ’ (4.65)

choose R, o to be of the form

Rip= [(Rlbo)“ g} , (Rioh) € R™X™ (4.66)

and for some positive scalar a choose

Vao = alVsy (4.67)
(ii) In a basis in which
Ao = [(A%)n Eﬁgg::] . (Ao)ys € R ™, (4.68)
choose V; g to be of the form
Vie = [(Vlg)n 8] , (Vip)nn € R ™ (4.69)
and for some positive scalar « choose
R: = aRy; (4.70)

As discussed in (Collins, Haddad, and Ying 1993), a in (4.67) or (4.70) can always be chosen
sufficiently large that the corresponding LQG compensator is nearly nonminimal. In this case, a
very close approximation to (A.0,Bco,Cec0) is easily obtained by reducing the LQG compensator

to it’s (nearly) minimal realization using an appropriate technique such as balanced controller
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reduction (Yousuff and Skelton 1984). This initialization option can sometimes present a shorter

path to optimal solution than the first option given above.

Option 3. A third alternative (which does not require Ay to be stable) is based on the following
experimental observation. The initial system can be chosen to correspond to a low authority control

problem, e.g., one can choose
Ripo=aRyy, Vag=pVay (4.71)

with a and B large and let all other initial system parameters equal their final values. In this case
it has been observed that the reduced-order controller (A..,,B.r,C.,,) obtained by suboptimal
reduction of an LQG controller will often yield virtually the same cost as the LQG controller (see,
e.g., De Villemagne and Skelton 1988), hence indicating that (A, Bcr,Ce,r) is nearly optimal. In
this case we choose (Ac0,Bc0,Ccp0) = (Ac,rs Be,ry Ce,r). It should be noted that these observations

are partially (but not fully) explained by the results of (Collins, Haddad, and Ying 1993).

Below, we present an outline of the homotopy algorithm. This algorithm describes a predic-
tor/corrector numerical integration scheme. There are several options to be chosen initially. These
options are enumerated before presenting the actual algorithm. Notice that each option corresponds

to a particular flag being assigned some integer value.
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Controller Basis Options:

basis = 0. No basis (i.e., all elements of the controller matrices are considered free.)
basis = 1. Tridiagonal Basis.

basis = 2. Second-Order Polynomial Form.

basis = 3. Controllable Canonical Form.

Note that for basis = 0 or 1, p > ppy, while for basis = 2 or 3, p = puin.

Prediction Scheme Options:

Here we use the notation that Ag,A_;, and A; represent the values of A at respectively the
current point on the homotopy curve, the previous point and the next point. Also, 8,' = df,/dA

and is the solution of Davidenko’s differential equation (4.7), rewritten here as
Hgp8,(A)+ Hx=0. (4.72)
If p = pmin, Hs,p is generally invertible, then 6,(7) is given exactly by
8,(\) = —H, Hi. (4.73)

If p > pmin, then Hy, generally has rank pmi, and 6,()) is approximated by the least squares

solution of (4.73) or

] [ E-l 0 ’r
6, =~V . 8 0] UtH, (4.74)
where it is assumed the /4, has the singular value decomposition
- ]
Hop=U ['60 g VT, T4 € RPmsXPuin, (4.75)

Note that for p = pmin (4.73) and (4.74) are equivalent.
pred = 0. No prediction. This option assumes that 8,(A;) = 6,(Ao).

pred = 1. Linear prediction. This option assumes predicts #,(A; ) using only 8,(Ao) and 8,'( o).

In particular,
6,(M1) = B,(%0) + (A1 = 20)6,'(0) (4.76)

pred = 2. Cubic spline prediction. This option predicts 8,();) using 8,(Ao), 6,'(Xo), fp(A_q)

and 6,'(A_;). In particular,
ﬁp(Al) =(I.0+(11/\1 +02/\]2+(13A13 (4.77)
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where ag, a;, a; and a3 are computed by solving

1 0 1 0 O,(Ac1)
Ay 1 X 1| _ |8 (xy)

[ao a1 az a3) AL, 22, A 2x%| T 5p(,\0) (4.78)
ALy 3L A 34 6,(Xo)

Note that if this option is chosen, then at the initial algorithm prediction step 8,(A-;) and

6,(A-1) are not available, in which case linear prediction is used.

Correction Options:

Here we assume that the homotopy parameter has a fixed value Ag. The vector 8, represents
the current approximation of the parameter vector at A = Ag. Each of the options corresponds to

updating 8, using the formula
6, — 0, + AB, (4.79)

where

Aby, = —GopJep (4.80)
for some choice of Gy p.

corr = 1. Newton correction. In this option, if p = pyn,
Ga',, = Ha‘p-l (4.81)

while if p > pmin,
Gsp=V(Et +a21) 'sUT (4.82)

where a is some (small) scalar and (U,V, L) denote the singular value decomposition of Hg

such that
Hyp=UTVT, (4.83)

It can be shown that if G p is given by (4.82), then A6, minimizes

1 2 9 2
§[||H€.7»A”r’ + 0,I° + a*[|A6,|I°]. (4.84)

Hence, Af, is essentially a “Newton correction” that is relatively insensitive to singularities or

near singularities in the Hessian, Hy ;.

corr = 2. Quasi-Newton correction. In this option, Gy, denotes the estimate of H{.; using
only gradient and cost information. For the algorithm presented here the BFGS inverse Hessian

update is used (Fletcher 1987).
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Outline of the Homotopy Algorithm

Step 1. If basis > 1, then transform the initial controller (A0, Bco,Cc0) to the chosen basis

and let f;,p be the corresponding vector of free parameters.

Step 2. Initialize loop = 0, A = 0, AX € (0,1], § = So, 6, = 6y, and compute the cost J

and the cost gradient Jy , corresponding to S and the controller described by 6,.
Step 3. Let loop = loop+1. If loop = 1, then go to Step 5. Else, continue.

Step 4. Advance the homotopy parameter and predict the corresponding parameter vector

as follows.
d4a. Let \g = A
4b. Let A = A¢g + AN
4c. If pred > 1, then compute 8,(Ao).
4d. Predict 8,()) by using the option defined by pred.

4e. If the normalized gradient Jy ,[|Gs p]|/||6,] satisfies some preassigned tolerance, then

continue. Else, reduce AX and go to Step 4b.

Step 5. Correct the current approximation #,, to the optimization problem defined by § using

the option defined by corr until the normalized gradient,

JoplIGosl
16,1 (4.85)

satisfies some preassigned tolerance.

Step 6. If A = 1, then stop. Else, go to Step 3.

The above algorithm assumes monotonicity of the solution curve as a function of the homotopy
parameter A. However, it is not difficult to modify the algorithm so that the variable parameter is
the arc length as discussed in Watson 1986 and Watson 1987 since this modification would still only
require the computation of Hy and Hy. The modified algorithm would not require monotonicity of
the solution curve. However, so far in our computational experience the solution curve has always

been monotonic.

Note that if p = piniw and corr = 1, then tlie corrections of Step 5 correspond to Newton

corrections. Hence if the prediction tolerance used in Step 4 is sufficiently small, then, entering
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Step 5, 6, will be close enough to the optimal value 8, so that the quadratic convergence proper-
ties of Newton’s method (Fletcher 1987) can be realized. In practice, this quadratic convergence
property is not always realized due to numerical ill-conditioning associated with the minimal pa-

rameterization of the controller. This ill-conditioning is illustrated and discussed further below.

5. Illustration of Reduced-Order Design Using a Four Disk Example

This section illustrates the homotopy algorithm of Section 5 by considering control design for
an axial beam with four disks attached as shown in Figure 5.1. This example was derived from
a laboratory experiment described in (Cannon and Rosenthal 1984) and has been considered in
several subsequent publications [Anderson  and Liu 1989, De Villemagne and Skelton 1988, Liu,
Anderson, and Ly 1990, Hyland and Richter 1990). The basic control objective for the four-disk
problem is to control the angular displacement at the location of disk 1 using a torque input at the
location of disk 3. It is also assumed that a torque disturbance enters the system at the location

of disk 3.

The design philosophy adopted here is that the scaling ¢2 of the nominal control weight R0 =1
and the nominal sensor noise intensity V2o = 1 are simply design knobs used to determine the
control authority. (Hence, Ra(A) = ¢.(A)R20 and V3(A) = ¢2(A)V30.) The system costs are
computed assuming V> = 0 although V; = 0 is not assuined in the design process. This general
philosophy is actually motivated by insights into LQG theory. However, it will suffice here to
simply note that this philosophy was used successfully on two hardware experiments involving
control design and implementation [Collins, Phillips, and Hyland 1991, Collins, King, Phillips and
Hyland 1992). It should be noted that these assumptions do not influence the qualitative results

described below.

Below, we will compare various algorithm options. In particular, we desire to illustrate the types
of convergence that are sometimes achieved when various bases are used to represent the controller,
and the speed of the algorithm when various prediction options are used. We will also investigate
what type of convergence and speed are achieved when H; 1. the inverse of the Hessian of the cost
is not computed explicitly but is estimated using a Quasi-Newton method. The comparisons are
all based on a MATLAB implementation of the algorithin and the program in each case was run

on a 486, 33 MHz PC.

We choose to base the comparison on the design of an 8th order controller (for the 8th order
design plant). Of course, we can solve for optimal full-order controllers using Riccati equations but

we choose this order controller hecause experientially we have seen that the higher the order of
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the controller the more the algorithm struggles when a particular basis is chosen for the controller.
Hence, we are essentially basing our comparisons on the worst-case controller order for this par-
ticular design model. The controller that is used to initialize the algorithm is the LQG controller

corresponding to the choice g2 = 1. The algorithm is used to deform this controller into the higher

authority controller corresponding to ¢; = 0.1.

Table 5.1 shows a comparison of the algorithm when various bases are chosen for the controller.
Linear prediction is used in each case. In fact, it was seen experimentally that if cubic spline
prediction was used, the algorithm performance degraded if an over-parameterized controller basis
(i.e., tridiagonal basis or no basis) was used. This phenomenon is almost certainly due to the
fact that in these cases the tangent vectors (f,())) are only estimated using (4.71) and hence are
not accurate. As evidenced from Table 5.1, the performance of the controllable canonical form
was worse in terms of clock time and minimum and maximum step size. The minimum step size
of 7.8e-16 indicates substantial ill-conditioning along the homotopy path. For this example, the
second-order polynomial form required the least number of flops although it did require slightly
more clock time than the tridiagonal basis. In terms of minimum and maximum step size, the

choice of no controller basis was better conditioned than restriction to any of the bases.

Controller Real Time [No. Hessianf Minimum Maximum
Basis Megaflops (sec.) Calculations) Step Size Step Size
None 1098 1098.2 47 0.01 0.32

Tridiagonal 590 880.7 120 0.0003 0.08
SPF 518 930.4 283 0.0001 0.04
CCF 828 1524.7 401 7.8e-16 0.02

Table 5.1. Comparison of Controller Basis Options

Table 5.2 shows a comparison of the algorithm when the second-order polynomial form was
chosen for the controller and various prediction options were used. Notice that in terms of real
time, linear prediction required only 17.8% of the time required when no prediction was used. Cubic
spline prediction required only 5.6% of the time required when no prediction was used. The ability
to predict along the curve described by the changing parameters is one of the practical benefits of

formulating an optimization problem formally in terms of a homotopy.

Prediction Real Time |[No. Hessianl Minimum |Maximum | Correction

Option Megaflops (sec.) Calculationg Step Size | Step Size | Tolerance
None 35G0 5205.0 1552 Ge-15 0.01 10-4
Linear 518 930.4 283 1.5e—4 0.04 10-4
Cubic 160 293.2 86 0.01 0.08 10-°

Table 5.2. Comparison of Prediction Options for SPF Controller Basis
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Figure 5.1. The Four Disk Model.
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Table 5.3 shows a comparison of the algorithm when the second-order polynomial form was
chosen for the controller, H; ! was estimated using a Quasi-Newton (in particular BFGS) method
and various prediction options were used. The “+” under the Megaflop heading indicates that
the MATLAB flop counter overflowed and so the flop data is unavailable. Notice that when the
Quaéi-Newton method was used, the prediction did not help. This is because of the inaccuracies
in the tangent vectors due to the errors in the estimate of the inverse Hessian. Also note that by
comparing Table 5.2 with Table 5.3, the behavior of the Quasi-Newton method was substantially
worse than the behavior of the algorithm when the Hessian inverse was calculated exactly. In fact
the best clock time for the Quasi-Newton method was 27 times slower than the best clock time

when the inverse Hessian was calculated exactly.

Prediction Real Time Minimum Maximum

Option Megaflops (sec.) Step Size Step Size
None * 7960.3 1.0e-14 0.01
Linear * 80114 1.0e-14 0.01
Cubic * 8902.1 1.0e-14 0.01

Table 5.3. Comparison of Prediction Options for SPF Controller Basis
with Quasi-Newton Approximation to Inverse Hessian

Figures 5.2 throueh 5.4 consider respectively the design of 2nd, 4th and 6th order controllers for
authority levels corresponding to ¢; € (1,0.1,0.01,...1.0¢ — 6) and compare the optimal curves for
an LQG controller, a reduced-order controller obtained by balancing and an optimal reduced-order
controller. In each case, the optimal reduced-order controller performs substantially better than the
balanced controller as the authority level is increased (i.e., ¢ is decreased). At low authority, the
cost curves of the balanced and optimal controllers coincided, indicating that the two controllers
are probably very similar. In fact the low authority balanced controllers were used to initialize the
homotopy algorithm in the design of the optimal reduced order controllers as discussed in Option
3 of Subsection 4.4. Figure 5.5 compares the optimal controllers of various orders. This type of

figure can be used in practice to determine the order of the controller to be implemented.

6.0 Conclusions

This paper has presented a new homotopy algorithm for the design of H, optimal reduced-order
controllers. The example of the previous section illustrated some of the features of the various al-
gorithm options. For the test case considered, the option of estimating the inverse Hessian (H 1)
via a Quasi-Newton method performed considerably worse than the option of actually comput-

ing the Hessian and inverting it. The results also show the ill-conditioning that can occur when
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a particular basis is chosen for the controller. For example, the second-order polynomial form
was particularly ill-conditioned for the test case. In addition, the tridiagonal basis, which over-
parameterizes the compensator, actually outperformed the second-order polynomial form in terms

of clock time required.

This ill-conditioning is not new. It is well known that restriction to a particular controller
basis can cause numerical ill-conditioning or even ‘instabi]ity (Kuhn and Schmidt 1987, Ge, Collins,
Watson, and Davis). At least two solutions are possible. One is to have a family of minimal
controller bases and have the algorithm switch to the basis that is best conditioned (Kuhn and
Schmidt 1987,Ge, Collins, Watson, and Davis). Besides the second-order polynomial form and the
- controller canonical form mentioned here, another basis that could be included in this family is
the input normal Riccati basis of (Davis, Collins, and Hodel 1992). As observed here, one can
also use a slightly over parameterized controller basis such as the tridiagonal form. However, even
these bases will not always be well-conditioned. One other option is to augment the cost function
with a term that includes the squares of the free controller elements (Kuhn and Schmidt 1987).
Unfortunately, this alternative requires a cost function that is not well motivated physically. In our
opinion, finding practical solutions to ill-conditioning is the fundamental problem in the numerical

computation of optimal reduced-order controllers.
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Appendix A: Closed-Loop Matrix Derivatives

In this appendix we present explicit expressions for the derivatives %’i’—_, geE,»’ g—g, 9—%, %L;‘, and
g—‘:\' where
vec(A,)
6= |vec(B.)]|, (A.1)
vec(C.)
e - A -BCc
A= [Bcc A.— B.DC.|’ (A2)
b R Rlz]
R=|% = , Al
[RxTz R (&-3)
where
Rn = R1 (A4a)
Ry2 = - R12C. (A.4b)
Ry = CIR,C., (A.4c)
and
V= [:—1-11- ‘-”] (A.5)
12 22
where
‘-/n = V] (Aﬁa)
V12 = Vi BT (A.6b)
Vo, = BTV, BY. (A.6c)

It is assumed that the plant matrices (A, B,C, D), the cost weighting matrices (R, Ry2, R2)

and the disturbance matrices (17, V)3, V3) are the following functions of A.

AN BN] _[40 Bo] _ 4; B;]_[A0 Bo
[C('\) D('\)]_ Co Dz]'ﬂ([c, D,] [Co Do]) (A.7)
[1];17]9((,1\)) };;22((,\/\))]=LR('\)L£(I\) (A.8a)
where
Lr(A) = Lro+ AMLry - Lro) (A.8b)
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and Lro and Lp s satisfy

T _ | o Rinp
LR,oLR,o-[R'lrz'o Rz.O]

R R
L LT = [ 1.1 12,!]
R'! R'! R};'! Rz.!

(A Vi2(M)] _ T
[VS(/\) V,T(A)] = Lv(MLv(})

where
Ly(A) = Lvo + MLv,s = Lvy)

Below, we use the notation
oM

T

M

>

Note that from (A.7)-(A.9)
A B)_[A;-Av B;-Bo
¢ D|T|Cc;-Co D;j-Dy

[ ! R’”] = LpLg" + LrLR"

R, R
where
Lr=Lpys-Lro
f/ V . . T
[V,}g &;] =LvLvT 4+ LvLy
where

Ly = LV,] - Lv_o.

aR

(A.8¢)

(A.8d)

(A.9a)

(A.9%)

(A.10)

(A.11)

(A.12a)

(A.12b)

(B.12¢)

(A.12d)

The derivations of the expression for gf}, 56, and g—;; are primarily based on the application

of the following derivative formulas. It is assumed that X is an m x n matrix and Aisann x p

matrix.
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Derivatives with respect to 8; for 6; = a x¢

i [0 0
Oac ke 0 el? 0T

Derivatives with respect to §; for §; = b. i,

0A
abc.kl

AR
b ke
v
Ol ke

Mo, P, :)C.

0

Derivative Formulas

d .
L O P
dz, XA=eA(4:)
d .
—_— = A(: 1)eld)
dzy; AX = A(:,1)e;
d

—XT4 = el A(s.:
dz.-J-X A= e A(e,)

d T _ A(- )ell)
dz;; AX" = A(:,5)e,

d N o
Iz‘—jAXB = A(;,4)B(j,:)
d T . X

EBT;AX B = A(.,])B(t, )

e eﬂc
R
=0
be xe
v
=0
abc.kl

0 0
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[Vi2(:,€) = BDVa(:, €))eh)
SYM eFvy(¢, )BT + BVy(:, £)e

(A.14)

(A.15)

(A.16)

(A.17)
(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)



Derivatives with respect to 8; for 8; = c. i,

- o —BG.EFeOT
aA - (" )cn:
= (A.26)
aCc|k[ (l)T
\-0 _BcD(:,k)eﬂ¢
r T
oR 0 [~Ria(:,k) + CTDTRy(:, k)]’
= (A.27)
Bcee T 0T | (0
| SYM  C Ra(:,k)en, + en/Ra(k,:)Ce
v
Occ ke =0 (A-28)
Derivatives with respect to A
j&?_é_ A -BC (A.29)
~8) | B.C -B.DC. )
Re 9% _ | By By (A30)
O Ry Ry
where
}.—?11 = I‘(l (A.31¢)
Riz = =RiC. (A315)
}}gg = C;rf?ch. (A.3lc)
< "/ ‘7 2
V= H }l‘l z 12 (A'32)
Vi Vo
where
‘:/11 = V] (A33¢)
Vis = Vi BY — BDTV, BT - BD .V, BT (A.36b)
Vi = BV, BT, (A.36¢c)



Appendix B: Efficient Computation of Hy

In this appendix we show how to efficiently compute Ho, using (4.26) with (4.37)-(4.39),
(4.40)-(4.48), (4.31)~(4.33) and (A.20)—(A.28). First, we assume that ¥ transforms A € IR X"t

to either, complex modal form or complex Schur form, such that
VAW = A - (B.1)

where A € C™etX™e¢ is diagonal or upper triangular. The pre- and post-multiplying (4.31) respec-
tively by ¥¥ and ¥, pre- and post-multiplying (4.32) by respectively ¥~! and ¥~ and pre-
post-multiplying (4.33) by T-! and T give

0= A"PU) 4 PUIA 4 (AT P 4 PAUY) 4 RV)) (B.2)
0= AQW) 4+ GDA" 4 (ANQ + QADT 4 719y (B.3)
Z0) = gWp 4 G P9 (B.4)
where

pli) = wHplily (B.5)
Q(i) = W'lé(j)W'H (B.6)
ASIER AR (B.7)
P=v"py (B.8)
Q=v"1Qu-* (B.9)
AG) = g1 40 g (B.10)
RY = ¢HROD Y (B.11)
VU = y-iyldy, (B.12)

Next, partition ¥ as
Y= [gl] v W €R™MXT, Wy € IRMT (B.13)

and partition ¥~ as
U= [(U7N), (8], (FTT) € RTXTs, (W), € IRMOXT (B.14)
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Also, define

B= (v '),B (B.15)
c=cy, (B.16)
R 2V Ry, (B.17)
Vi 2 (V"' W, (B.18)
B. £ (¥7'); B, (B.19)
C.2C.V,. (B.20)

Now, recall that MU) £ % where 8; represents either a. ke, be ke, Cc ke- It then follows from

(B.10)~(B.12) and (A.20)-(A.28) that A9, R()) and V{9 are given as follows.

for 65 = ac ke

AD) = §31(:, 0)¥2(k, ) (B-21)
RO =0 (B.22)
v =9 (B.23)
for Hj = bc,k(
A = w71 R)[C(L,:) + D(¢,:)C] (B.24)
R =9 (B-25)
7O = {[17,2(:,£) — BDVy(:,0) + B.Va(:, 0)) [(w-‘)g(:,k)]”}
+ { [T ) + B O] [(v k] P} (B.26)
for 0j = Cc k¢
AY) = [B(:,k) + B.D(:, k)] ¥a(t,:) (B.27)
RO = {{(072(€9) T [~ Rua(, ) + Ra(k,)D.C + Ralk,)C] |
+ {[(\p-‘)g(t,:)]”[-Ry_,(;,k)” + Ra(k,:)C] }H (B.28)
v = (B.29)
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Note that (B.21)-(B.29) allow the transformation of A(9), R() and V(9 to the modal of Schur

basis to be performance very efficiently.

Now, it follows from (B.5)~(B.7) that

PU) = g-H plidg-1 (B.30)
O = yQUIYH (B.31)
ZU) = g Zyg-1 (B.32)

or, equivalently,

CAY PP [ POEY (w-‘){’f’“’(w-‘h} (B.33)
_ B.33
-y T -l - = - _ - _
LB B [(ETHFRUN(ETY) (BTN PO(ETY),
G0 09 [ mow wave
T N s _. (B.34)
-Q(sz) g:;) _q;zQ(J)q;{l v,QU ¥
29 291 [wZU(¥ ) §,Z20(87),
TR _ _ : (B.35)
D 2B [waZ2U9e) . ZU(e),
It follows from (4.37), (B.35), and (B.4) that
Hy (22 HY = 0,QWP(E7Y), + 97 QP2 (B.36)
It follows from (4.38), (B.33), (B.35), (B.13), (B.14), and (B.16)-(B.18) that
Hy (P, ZUh) 2 ch) = 2[¥f (PDMpypc) + P(QY'ChaC)) (B.37)
where
PREwHPp (B.38)
Mypc 2 Vs + B.V; + QClipc (B.39)
Cusc = C - DC.. (B.40)
Similarly, it follows from (4.39), (B.34), (B.35), (B.13)~(B.15), (B.17) and (B.18) that
HE(QYW,20)) = HY = 2[(MpccQW) ¥ - (B oo PY)QH) (B.41)
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where

Q2 £ ¥2Q

Mycc 2 R,C. — RE, — Bucc P
Brcc £ B+ B.D.

(B.42)
(B.43)
(B.44)

Finally, substituting (B.33)~(B.35) into (4.40)-(4.48), using (B.13)-(B.18) and recalling the
definitions (B.36), (B.37) and (B.41) gives the following.

Derivations with respect to a. i,

OH 4, (3)

aac.kl Ae

O0Hp, ()

Oac ke B

O0Hc, (5)

da Ce
¢, k¢

- rY

—_— Hg‘) -— Q(Pz(\ll—l)g(:,k))‘/z(e,:)

= HY - 2D(¢,:)T (Py(k,)Q¥)

A = Q)

=B = g _2(BQa(¢,)%)D(:, k)T

=S = HY - 2R,(:,k)(Qa(L,)¥F)

41

(B.45)
(B .46)

(B.47)

(B.48)
(B.49)

(B-50)

(B.51)
(B.52)

(B.53)
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1. Introduction

The development of linear-quadratic-gaussian (LQG) theory (1-3] was a major breakthrough in
modern control theory since it provides a systematic way to synthesize high performance controllers
for nominal models of complex, multi-input multi-output systems. However, one of the well known
deficiencies of an LQG compensator is that its minimal dimension is usually equal to the dimension
of the design plant. This has led to the development of techniques to directly synthesize optimal
reduced-order controllers [4-17] and techniques to synthesize reduced-order approximations of the

optimal full-order compensator (i.e., controller reduction methods) [18-23).

The controller reduction methods almost always yield suboptimal (and sometimes destabilizing)
reduced-order control laws since an optimal reduced-order controller is not usually a direct function
of the parameters used to compute or describe the optimal full-order controller. Nevertheless, these
methods are computationally inexpensive and sometimes do yield high performing and even nearly
optimal control laws. An observation that holds true about most of these methods is that they
tend to work best at low control authority [17, 21, 23]. However, to date no rigorous explanation

has been presented to explain this phenomenon.

One of the purposes of this paper is to provide a partial explanation as to why the suboptimal
projection methods tend to work at low control authority. The discussion here focuses on stable
systems. It is shown that if the state weighting matrix R; or disturbance intensity (or covariance
for discrete systems) V7 has a specific structure in a basis in which the A matrix is upper or lower
block triangular, respectively, then at low control authority the corresponding LQG compensator
is nearly nonminimal and can hence be easily reduced to a nearly optimal reduced-order controller.
The conditions presented for R; and V; often are satisfied or nearly satisfied in practice. Hence, for
stable systems the results proved in this paper do offer one explanation of why suboptimal controller
reduction methods often provide nearly optimal control laws at low authority. The results can also
be used as guidelines for choosing R; and V) such that suboptimal controller reduction methods

yield “good” reduced-order controllers.

Suboptimal controller reduction methods can be used to initialize algorithms for synthesizing
optimal reduced-order controllers. Of particular interest are the homotopy algorithms of [11. 15-17]
since they are based on allowing the plant and weights defining an optimization problem to vary
as a function of the homotopy parameter A € [0.1]. These homotopy algorithms rely on choosing

the initial plant and weights so that the corresponding LQG compensator is easily reduced to a



nearly optimal reduced-order compensator of the desired dimension. Hence, the results presented
here provide some rigorous guidelines for initializing these algorithms. Note that the restriction to
stable systems is not necessarily limiting since the freedom involved in defining a homotopy allows
this assumption to be satisfied. However, future work will focus on theory that directly applies to

unstable systems.

Notation

IR,IR"** IR" real numbers, r X s real matrices, R™*!

IE expected value

X>20X>0 matrix X is nonnegative definite, X is positive definite
0rxs,0; T X § zero matrix, r X r zero matrix

I, r X r identity matrix

vec(-) the invertible linear operator defined such that

vec § £ [s] sT---sT]T, § € RP*Y,
where s; € IR? denotes the j'" column of S.
2. Low Authority LQG Compensation: Continuous-Time Systems

Consider the n**-order linear time-invariant plant

z(t) = Az(t) + Bu(t) + Dyw(t), (2.1a)
¥(t) = Ca(t) + Dyu(t), (2.10)
where (A, B) is stabilizable, (A, C) is detectable, z € IR",u € R™,y € R',and w e R%is a
standard white noise disturbance with intensity I; and rank D; = l. The intensities of D,w(t) and
D,w(t) are thus given, respectively, by V; 2 D, DT >0,and V, £ D, DT > 0. For convenience, we
assume that Vj, £ D, DT =0, i.e., the plant disturbance and measurement noise are uncorrelated.

Then, the LQG compensator

i.(8) = Acze(t) + Bey(t), (2.2a)
ult) = —Cezc(t). (2.2b)

for the plant (2.1) minimizing the steady-state quadratic performance criterion
1 t
J(Ae. Be.Ce) £ lim —IE /[:T(smlx(s) + uT(s)Rau(s))ds. (2.3)
0
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where R; > 0 and R, > 0 are the weighting matrices for the controlled states and controller input,
respectively, is given by:

A= A-XP-QL, (2.4a)

B.=QC™V;!, C.=R;'BTP, (2.4b,¢)

where T £ BR; 1T § 2 CTV{IC, and P and @ are the unique, nonnegative-definite solutions

respectively of
0=ATP 4+ PA+ R, - PXP, (2.5)
0=A4Q + QAT + ; - QEQ. (26)

Furthermore, the “shifted” observability and controllability grammians [18, 24] of the compensator,

P and Q, are the unique, nonnegative-definite solutions respectively of
0=(A-QE)TP + P(A- QL)+ PEP, (2.7)

0=(A-ZP)Q+Q(a-2P)T +QEQ. (2.8)

Although a cross-weighting term of the form 2z7(¢)R;,u(t) can also be included in (2.3), we shall
not do so here to facilitate the presentation. The magnitudes of R; and V; relative to the state
weighting matrix R; and plant disturbance intensity V; govern the regulator and estimator au-
Vall >> {Wall,

vields a low authority compensator. It has been observed numerically that low authority LQG

thorities, respectively. The selection of R; and V; such that ||R;]| >> ||Ry]|, or

compensators are often nearly nonminimal [17, 21]. This section provides a rigorous justification
for this observation when the open-loop plant is stable and (A, R;) or (A,V;) have a particular
structure. In order to prove this result, we first exploit some interesting structural properties of
the solutions of the Riccati equations and Lyapunov equations assuming the coefficient matrix A

and the constant driving term R, have certain partitioned forms.

Lemma 2.1. Suppose

A 0 _ 1B _ | Rig 0
a=[ 0]s=[B] me[m 0] eseso

where A;, Ry € R™ ™, By e R™ ™™, R;; > 0.

(i) If (A.B) and (A, B;) are stabilizable, then the unique, nonnegative-definite solution of

the Riccati equation:

0=A"P+ PA+ R, - PBBTP. (2.10)

3



is given by

[ 0
P_[D 0,.-“,]’ (2.11)

where the n, x n, matrix P; is the unique, positive-definite solution of

0= ATP, + PA, + Ry, - P,B, BT P,. (2.12)

(ii) If Ais asymptotically stable, then the unique, nonnegative-definite solution of the Lyapunov

equation:
0=ATP+ PA+R,, (2.13)
is given by
1A 0
P= [ 0 On-n,] , (2.14)

where the n, X n, matrix P; is the unique, positive-definite solution of
0= A?Pl + P]Al + Rl,l- (215)
Proof.

(i) Since (A, B) is stabilizable and R; > 0, it follows from Theorem 12.2 of [25] that there
exists a unique, nonnegative-definite solution of the Riccati equation (2.10). Similarly, the
assumptions that (A;, By) is stabilizable and R;,; > 0 imply that there exists a positive-
definite matrix P, satisfying the Riccati equation (2.12). Using (2.12), it follows by con-
struction that (2.11) is the solution of (2.10).

(¢#1) This is a special case of the Riccati equation of property (i). O

The following lemma states the dual of Lemma 2.1 if the coefficient matrix A is upper block

triangular and V; is upper block diagonal.

Lemma 2.2. Suppose
_ Al sz _ - Vl.l 0
S B N L (2.16a,b.¢)
where 4;,V,; € R™ ™, C; e R™*™, Vi, > 0.

(7) If (A,C) and (A;.C) are detectable. then the unique, nonnegative-definite solution of the

Riccati equation:

0=AQ + QAT + 1, - QCTCQ. (2.17)
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is given by

Q=[QO1 0,,0 ] (2.18)

—-n,

where the n, x n, matrix Q; is the unique, positive-definite solution of

0=A1Q + Q1AT + Vi, - Q1CTC1 Q. (2.19)

(i1) If Ais asymptotically stable, then the unique, nonnegative-definite solution of the Lyapunov

equation:
0=AQ+ QAT + Vv, (2.20)

is given by

Q= [%‘ 0 0 ] (2.21)

n—-n,

where the n, X n, matrix @, is the unique, positive-definite solution of
0=A4,Q1 + Q14T + V1. (2.22)
Proof. The proof is dual to the proof of Lemma 2.1. O

The following theorem shows that, with proper choice of the weighting matrices, a low authority
LQG controller for a stable plant is nearly nonminimal. The proof of this theorem relies on the

above two lemmas.

Theorem 2.1. Consider the plant given by (2.1).

(7) Suppose

_ A O _ &1 0
a[B 0] ma[B 0], e

where A;, Ry, € R™ ™ Ry, > 0, and A is asymptotically stable. Let
V; £ BV, (2.24)
where V, is some finite, positive-definite matrix and § € IR is a positive scalar. Then

lim rank (Qf’) < lim rank P < n,, (2.25)

B—oc B—oc

where Q and P are the shifted controllability and observability grammians of the cor-

responding LQG compensator. satisfving (2.8) and (2.7). respectively. Equivalently. for

5



(i)

6 > 0, there exists N such that for all 8 > N, A, 41 < 8A,, , where ), represents the :**
eigenvalue of QPand \y > A 2> .2\ > Aig1-.. 2 0.

Suppose

_ A1 A _ Y 0
A= [ . Az], Vi = [ . OM'], (2.26a,b)

where A;,V;; € R™ ™™ V;; > 0, and A is asymptotically stable. Let
R; £ aRy, (2.27)
where R, is some finite, positive-definite matrix and a € IR is a positive scalar. Then
o(li_'mco rank (QP) < alem rank Q < n,, (2.28)

where Q and P are the shifted controllability and observability grammians of the cor-
responding LQG compensator, satisfying (2.8) and (2.7), respectively. Equivalently, for
6 > 0, there exists N such that for all @ > N, A, 41 < 8), , where A; represents the it*
eigenvalue of QP and A\; 2> A2 > ... 2 A 2 Ajq... 2 0.

Proof.

(1)

Partition B = [g;] and £ = [22-} %1:] , conformal to A in (2.23). The assumptions
12

(2.23) and that A is asymptotically stable imply that (A, B) and (A,, B;) are both stabiliz-
able. Thus, it follows from property (i) of Lemma 2.1 that the unique, nonnegative-definite
solution P of the Riccati equation (2.5) has the structure given by (2.11), which implies
that

(2.29)

_[ASA 0
PEP_[ ! 0].

Thus, noting the special partitioned structures in (2.29) and (2.23), and that A is asymp-

totically stable, it follows from property (i1) of Lemma 2.1 that there exists

s a[P 0O
0= [ 0 On—n,] 3 (2'30)

which is the unique, nonnegative-definite solution of
0=ATPy+ PbA + PTP, (2.31)
where n, x n, matrix P, is the unique. nonnegative-definite solution of

0=A?P]+P]A+P121P].
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Next, computing (2.31) — (2.7) and using (2.24), yields the following modified Lyapunov

equation:
0=ATAP + APA+ 87 (CTV,1CQP) + (CTV, I CQP)T). (2.32)
where
AP 2 Py - P. (2.33)

Since A is asymptotically stable and Q and P satisfy (2.6) and (2.7), respectively, Q and
P are bounded for all 8. Thus, (2.32) implies that lims_.oo |AP|| = 0. Hence, for ¢ > 0,
there exists M such that for all # > M, ||AP|| < e. Using (2.33), it follows that

. . [B oo
ﬁleooP—Po—[o 0]. (234)

Thus, limp—e rank (QP) < limg_.oo rank P = n,, which implies the following inequali-
ties of the eigenvalues of QP Suppose ); represents an eigenvalue of QP and A\ > Ag... >
Ai > Aip1... 2 0. Then, for 6 > 0, there exists N such that forall 3> N, Ap 41 < 8A,, .

(i#1) The proof is dual to the proof of (). O

Remark 2.1. Theorem 2.1 provides two ways of weighting matrices selection resulting in a
nearly nonminimal, low authority LQG compensator for a stable plant. The first approach starts
by transforming the plant A into coordinates such that A has the representation as in equation
(2.23a) after transformation. Then select the weighting matrix Ry with the partitioned form as in
(2.23b) and with rank R; = n,. By decreasing the authority of the compensator, or, equivalently,
increasing ||V2|| or B, the LQG compensator approaches nonminimality with minimal dimension of
n,. Using a dual approach, with A and V; partitioned as in (2.26), by increasing || R:|| or o, the

resulting LQG compensator approaches nonminimality.

Remark 2.2. Note that if 4 is in 2 modal form, then it satisfies both (2.23a) and (2.26a) of
Theorem 2.1. In this case, R; given by (2.23b), describes a state weighting matrix in which only
the states pertaining to selected modes are weighted. Similarly, V; given by (2.26b) describes a
disturbance that excites only certain modes. It is not uncommon for these conditions to be satisfied

or nearly satisfied in practice.

Remark 2.3. The suboptimal controller reduction methods of [18-23] characterize the redu-
ced-order controller by a projection or some other tvpe of reduction of the LQG controller. It

has been observed that these suboptimal reduced-order controllers for the low-authority contrel

i



problem will yield virtually the same cost as the LQG controller. According to Theorem 2.1, for
a stable plant and with proper choice of the weighting matrices, the LQG controller for a low
authority control problem is nearly nonminimal, which provides a theoretical justification for the

above observation.

Remark 2.4. The homotopy algorithms for reduced-order dynamic compensation problems
developed in [15-17] are based on allowing the plant and weights defining an optimization problem
to vary as functions of the homotopy parameter A € [0,1]. In particular, it is assumed that

[20) 2] =& lenl& %]-[& %)

[1?1}2((’;)) 12:((:)) = Lr(A)LR(N),
where

Lr(A)=Lro+ MLRr,y— Lro),

and Lgo and Lp ; satisfy

T _ | Rip Rizp T _ | Ry Riag
LR'OLR’O—[R;%.O R?.O]' LR'ILR'I—[R'ITLJ Ryy |’
-and
Vi(2) Vlz('\)} T
= Lyv(A)Ly(A),
[VS(A) vy | = VY
where

Lv(/\) =Lyo+ /\(LVJ - LV,o),

and Lvg and Ly,; satisfy

V; Vi Vi V;
L LT = 1,0 12.0] , L LT = [ 1.f 12,]]
vosve [V 2o V2o (g Vlg.f Vas

Note that the above equations imply that A(0) = Ao, B(0) = By, etc ... which are the ini-
tial set of system matrices and that A(1) = Ay, B(1) = By, etc ... which are the final and
given system matrices, To initialize the homotopy algorithm efficiently, the designer can choose
(Ao, Bo, Co, Ry 0, R12,0, R2,0. V1,0, V12,0, V2 0), to correspond to a low authority control problem with
stable open-loop plant as stated in Theorem 2.1, for which a nearly optimal reduced-order controller
may be easily obtained by balanced controller reduction [18] or an alternative suboptimal controller

reduction method [19-23].



3. Low Authority LQG Compensation: Discrete-Time Systems

In this section, we consider the discrete-time counterpart of the previous section. In particular,
a rigorous justification is provided for a nearly nonminimal low authority discrete-time LQG com-
pensator when the open-loop plant is stable and certain weighting matrix has specific structure.

Consider the n'*-order linear, discrete time-invariant plant

z(k + 1) = Az(k) + Bu(k) + Dyw(k), (3.1e)
y(k) = Cz(k) + Dyw(k), (3.1b)

where (A, B) is stabilizable, (A4,C) is detectable, z € IR",x € R™,y € IR!, and w € IR% is a
standard white noise disturbance with covariance Iy and rank D; = I. The covariances of D;w(k)
and D,w(k) are thus given, respectively, by V; = D, DT > 0,and V; £ D, DT > 0. For convenience,

once again we assume that V}, £ DID;r = 0. Then, the LQG compensator

zo(k + 1) = Acze(k) + Bey(k), (3.2a)
u(k) = —Cezc(k) - Dey(k), (3.2b)

for the plant (3.1) minimizing the steady-state quadratic performance criterion
J(A., B.,C., D) 2 Jim IE(zT (k)R z(k) + v (k) Ryu(k)], (3.3)
—00

where R; > 0 and R; > 0 are respectively the weighting matrices for the controlled states and

controller input, is given by [26]:

A.=A-Q.V,;'C - BR}}!P,, (3.4a)
B.=Q.V,;', C.=R;!P,. D.=R;}BTPAQC™V,!, (3.4b,c,d)

where
Q. 2 AQCT, P, 2 BTPA. V3 21, 4+CQCT, Ry £ Ry + BT PB, (3.5,6,7.8)

and P and Q are the unique. nonnegative-definite solutions respectively of

P=A"PA+ R, - PTR;}P,, (3.9)
Q=AQAT +17-Q,15;'Qr. (3.10)
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Furthermore, the “shifted” observability and controllability grammians of the compensator, P and

Q, satisfy
P=(A-QuVy'C)TP(A~QuVy.'C) + (Pa — RaD.C)TR;}(Ps — Ry D.C), (3.11)
Q = (A- BR;} P.)Q(A - BR;} P.)" + (Qa — BD:V2a )V, (Qu — BD. Vi), (3.12)

and P and @ are nonnegative definite.

As in the continuous-time case a cross-weighting term of the form 2zT (k) Ry5u(k) can also be in-
cluded in (3.3), we shall not do so here to facilitate the presentation. Similar to the continuous-time
compensation problem, the magnitudes of R; and V; relatively to R; and V; govern the regulator
and estimator authority, respectively. The following theorem is the discrete-time counterpart of
the continuous-time result stated in Theorem 2.1. It provides a rigorous justification for a nearly
nonminimal low authority discrete-time LQG compensator when the open-loop plant is stable and

R, or V; has certain structure.
1 1

Theorem 3.1. Consider the plant described in (3.1).
(t) Suppose

1A O _ | R 0
A= [A21 A2] ? Rl - [ 0 On—n,] ! (313a,b)

where A;, R 1 € R™ ", Ry, >0, and A is asymptotically stable. Let
Va & 8V, (3.14)
where V; is some finite, positive-definite matrix and € R is a positive scalar. Then
ﬁli_{noo rank (QP) < ﬁleoo rank P < n,, (3.15)

where ) and P are the shifted controllability and observability grammians of the corre-
sponding LQG compensator, satisfying (3.11) and (3.12), respectively. Equivalently, for
é > 0. there exists N such that for all 8 > N, A, 41 < 6}, , where \; represents the i
eigenvalue of QP and A\; > A2 > .. 2> A 2 Ajpq-- 2 0.

(#7) Suppose

(=]

A A
i

. "71.] 0 .
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where A;.V1; € R *", V] > 0, and A is asymptotically stable. Let
R; £ aR,, (3.17)
where R, is some finite, positive-definite matrix and o € IR is a positive scalar. Then
alglgo rank (QP) < 011_13100 rank @ < n,, (3.18)

where Q and P are the shifted observability and controllability grammians of the corre-
sponding LQG compensator, satisfying (3.11) and (3.12), respectively. Equivalently, for
6 > 0, there exists N such that for all @ > N, A, 41 < 6], , where ); represents the i**
eigenvalue of QP and A} 2 A 2 ... 2 A2 Aipq...2 0.

Proof. The proof is similar to the proof of Theorem 2.1. O

4. Numerical Illustrative Examples

To illustrate the proper choices of the weighting matrices resulting in a nearly nonminimal,
low authority LQG compensator for a stable continuous-time plant, consider a simply supported
beam with two collocated sensor/actuator pairs. Assuming the beam has length 2 and that the
- sensor/actuator pairs are placed at coordinates a = li%, and b = -:%, a continuous-time model

retaining the first five modes is obtained:
z = Az + Bu + Dw, y=Cz+ Dyw,

where

[0 1 0 1 0 1 0 1 0 1
A= block-dja.g( [_1 _0.01] ’ [_16 _0.04] ’ [_81 _009] ’ [—256 —016] ’ [—625 _0.25])a

p_ [0 02174 0 04245 0 —06112 0 07686 0 -08893)" . _ oy
|0 -08439 0 -09054 0 -0.1275 0 07686 0 09522 | ° -~ 7

The noise intensities are V; 2 DID;r = 0.11;0 and V, £ D, DT = BI,, and it is assumed that V;, £
D, DT = 0. The design objective is to minimize the continuous-time cost J = lim;— IE[zTRz +
uT Ryu], where R; = al,. Note that the magnitude of the positive real numbers a and 3 are the
indicators of the controller authority level. For this particular plant, A has the representation as
in (2.232) and (2.26a) with A;2 = 0 and A;; = 0, respectively. Here, we illustrate the results of
property (i) of Theorem 2.1 for the cases of n, = 2 and n, = 6. Setting a = 0.1, by selecting the

11



In,
0
the resulting LQG compensator approaches nonminimality with minimal dimension of n, or, equiv-

alently, 20:418P) _, () where A is the sorted (in descending order) i** eigenvalue of Q P. Figure 1

An (QP)
shows the ratio curve for n, = 2 with 8 € (0.01,0.1,1,10,10%,103,10%, 10°,10°). The curve clearly

weighting matrix Ry = [ g] , and increasing 8 (hence, decreasing the compensator authority),

indicates that the ratio decreases as 3 increases. To illustrate that suboptimal controller reduction
methods yield nearly optimal reduced-order compensators for low authority control problems, Fig-
ure 1 also shows the norm of the cost gradient of the 2™%-order controller obtained by balancing.
The cost gradient is defined as [(vec &)T (vec -5‘?5’:)1‘ (vec -5%":)T ]T. The cost gradient curve
indicates the balanced controller approaches the optimal reduced-order compensator as § increases,
or as the control authority decreases. Figure 2 shows the eigenvalue ratio of the LQG controller for

n, = 6 and the norm of the cost gradient of the corresponding 6t*-order balanced controller.

Conversely, if the weighting term R, for the above example does not have the structure given by
(2.23b), decreasing the controller authority (i.e., increasing §) may not yield a nearly nonminimal
LQG compensator. As a result, the norm of the cost gradient of the corresponding 2"4-order
balanced controller does not approach zero as the control authority decreases. This is illustrated
in Figure 3 for n, = 2 and R; = Ijo. Note that for this particular example, at § = 0.01 the
balanced controller destablizes the closed-loop system and hence the norm of the cost gradient

becomes infinite.

5. Conclusion

By exploiting structural properties of the solutions of the Riccati equations and Lyapunov
equations, this paper shows that for both continuous-time and discrete-time stable systems, if the
coefficient matrix A and driving weighting term R; (or Vi) have specific structures, the corre-
sponding LQG compensator becomes nonminimal as the control authority is decreased. This result
provides a partial explanation of why suboptimal projection methods tend to work best at low
authority. This paper also establishes some rigorous guidelines to initialize homotopy algorithms
for directly synthesizing optimal reduced-order controllers. In particular, to initialize the homotopy
algorithm efficiently the designer can choose the plant and weighting matrices to correspond to a
low authority control problem with stable open-loop systems as stated in Theorem 2.1 or 3.1. In
this case, a nearly optimal reduced-order controller may be easily obtained using an appropriate

suboptimal controller reduction method such as balancing since the resulting LQG controller is

12



nearly non-minimal. These results are clearly illustrated by numerical examples.

Conversely, if the structure of the plant and weighting matrices do not satisfy the conditions
specified in Theorem 2.1 or 3.1, the resulting LQG compensator is not necessarily nearly minimal
even at low control authority. In this case, reduced-order controllers obtained by suboptimal
projection methods may not be nearly optimal even at low authority. This result is illustrated in

the last example with a reduced-order controller obtained by balancing.
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